Bone tissue engineering (BTE), based on the perfect combination of seed cells, scaffold materials and growth factors, has shown unparalleled potential in the treatment of bone defects and related diseases....
Carbon dots (CDs), as rapidly developing nanomaterials, give new prospects for the treatment of various diseases. Their great biocompatibility and wide specific surface area make CDs excellent drug-delivery vehicles because they improve cellular uptake and absorption and allow for medications to bind more easily. CDs offer enormous potential as delivery systems for antiinflammatory medications. The activities of antiinflammatory drugs delivered by CDs are higher than those of free drugs. They also have controlled release, thus enhancing the cumulative effect at the inflammation site and improving pharmacokinetics. Compared with free small-molecule antibacterial medicines, CD-based drugdelivery systems have higher antibacterial efficacies, better targeting, increased cellular uptake and internalization efficiency, and decreased systemic side effects. The benefits of using CDs as anticancer drug carriers include high drug loading, increased targeting, lower drug dosage, regulated drug release, and synergistic photothermal therapy, which offers a novel approach to the diagnosis and treatment of cancer in clinical settings. However, it is important to consider the biosafety, toxicity, and impact of CDs on the immune system of an organism before using them as drug-delivery vehicles for clinical diagnosis and therapy. This review discusses the use of CDs in the delivery of antiinflammatory, antibacterial, and anticancer drugs and summarizes the current advantages and challenges of using CDs for drug delivery.
Purpose
Oral squamous cell carcinoma (OSCC) is a malignant disease with serious impacts on human health and quality of life worldwide. This disease is traditionally treated through a combination of surgery, radiotherapy, and chemotherapy. However, the efficacy of traditional treatments is hindered by systemic toxicity, limited therapeutic effects, and drug resistance. Fibroblast activation protein (FAP) is a membrane-bound protease. Although FAP has limited expression in normal adult tissues, it is highly expressed in the tumor microenvironment of many solid cancers – a characteristic that makes it an ideal target for anticancer therapy. In this study, we constructed a nano-drug delivery system (NPF@DOX) targeting FAP to increase the therapeutic efficiency of synergistic chemo-photothermal therapy against OSCC.
Methods
We utilized PEGylated nano-graphene oxide (NGO) to link doxorubicin (DOX) and fluorescently-labeled, FAP-targeted peptide chains via hydrogen bonding and π–π bonding to enhance the targeting capability of NPF@DOX. The synthesis of NPF@DOX was analyzed using UV–Vis and FT–IR spectroscopy and its morphology using transmission electron microscopy (TEM). Additionally, the drug uptake efficiency in vitro, photo-thermal properties, release performance, and anti-tumor effects of NPF@DOX were evaluated and further demonstrated in vivo.
Results
Data derived from FT–IR, UV–Vis, and TEM implied successful construction of the NPF@DOX nano-drug delivery system. Confocal laser scanning microscopy images and in vivo experiments demonstrated the targeting effects of FAP on OSCC. Furthermore, NPF@DOX exhibited a high photothermal conversion efficiency (52.48%) under near-infrared radiation. The thermogenic effect of NPF@DOX simultaneously promoted local release of DOX and apoptosis based on a pH-stimulated effect. Importantly, FAP-targeted NPF@DOX in combination with PTT showed better tumor suppression performance in vivo and in vitro than did either therapy individually.
Conclusion
NPF@DOX can precisely target OSCC, and combined treatment with chemical and photothermal therapy can improve the therapeutic outcomes of OSCC. This method serves as an efficient therapeutic strategy for the development of synergistic anti-tumor research.
Oral leukoplakia (OLK) has received much attention due to its potential risk of malignant transformation. Studies have shown that when drug therapy is combined with photothermal therapy (PTT), not only can the cytotoxicity of the drug be enhanced, but also the heat energy can be used to kill the lesion cells, so we can combine drug therapy with PTT to enhance the therapeutic effect on OLK. However, with certain drawbacks due to its lack of targeting, fibroblast activating protein (FAP) has become an attractive target for OLK combination therapy. In this study, we used NGO-PEG loaded with FAP-targeting peptide and celecoxib (CXB) to construct a nano-drug delivery system CGPF for targeting OLK with high FAP expression, and confirmed the biocompatibility and therapeutic efficacy of CGPF by in vitro and in vivo experiments. Overall, the novel nano-drug delivery system CGPF proposed in this study showed a very significant potential for the combination therapy of OLK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.