In this paper, an efficient architecture for the Finite Ridgelet Transform (FRIT) suitable for VLSI implementation based on a parallel, systolic Finite Radon Transform (FRAT) and a Haar Discrete Wavelet Transform (DWT) sub-block, respectively is presented. The FRAT sub-block is a novel parametrisable, scalable and high performance core with a time complexity of O(p 2 ), where p is the block size. Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) implementations are carried out to analyse the performance of the FRIT core developed.
Abstract-This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tinoxide gas sensors.Index Terms-Committee machine (CM), dynamically reconfigurable field programmable gate array (FPGA), gas identification, pattern recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.