While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.
The hermeticity and diffusion behavior of “epi-seal” encapsulation [R. N. Candler et al., J. Microelectromech. Syst. 15, 1446 (2006); B. Kim et al., Proceedings of the ASME 2007 InterPACK Conference (InterPACK’07), 33234 (2007)], an epitaxially deposited polysilicon film encapsulation for microelectromechanical systems (MEMSs), were investigated. MEMS resonators with pressure sensitive quality factor were fabricated inside episeal cavities. By measuring the quality factor and inferring cavity pressure, leakage through the encapsulation was studied as a continuation of previous hermeticity investigations [B. Kim et al., Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE, pp. 413–416 (2004)]. During long-term monitoring performed at 100 °C in a normal atmosphere, the encapsulated cavity pressure increased at a rate of 5–10 mTorr/yr, whereas no measurable pressure change could be detected in our previous room temperature measurement performed with identically designed and encapsulated resonators. To identify the cause of this pressure increase, the diffusive gas species and diffusion pathways in the epi-seal encapsulation were investigated experimentally. Various gas species in the atmosphere were tested in a 400 °C accelerated environment. These tests identified hydrogen and helium as highly diffusive gas species and showed argon and nitrogen to be much less diffusive under these conditions. Also, a series of devices with modifications of encapsulation geometry was tested in a hydrogen environment at 400 °C. Silicon dioxide, used for sacrificial and passivation layers, was identified as the primary diffusion pathway through the epi-seal encapsulation. These experimental results and diffusion pathway models were compared with the diffusion activation energy of various gas species in semiconductor materials, enabling design and process optimization for improved hermeticity of wafer-scale thin-film encapsulation for MEMS devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.