We compare the spatial, kinematic, and metallicity distributions of stars in the Milky Way disk, as observed by the Sloan Digital Sky Survey and Geneva-Copenhagen Survey, to predictions made by N-body simulations that naturally include radial migration as proposed by Sellwood & Binney. In these simulations, stars that migrate radially outward feel a decreased restoring force, consequentially they reach larger heights above the mid-plane. We find that this model is in qualitative agreement with observational data and can explain the disk's double-exponential vertical structure and other characteristics as due to internal evolution. In particular, the model reproduces observations of stars in the transition region between exponential components, which do not show a strong correlation between rotational velocity and metallicity. Although such a correlation is present in young stars because of epicyclic motions, radial migration efficiently mixes older stars and weakens the correlation. Classifying stars as members of the thin or thick disk by either velocity or metallicity leads to an apparent separation in the other property, as observed. We find a much stronger separation when using [α/Fe], which is a good proxy for stellar age. The model success is remarkable because the simulation was not tuned to reproduce the Galaxy, hinting that the thick disk may be a ubiquitous Galactic feature generated by stellar migration. Nonetheless, we cannot exclude the possibility that some fraction of the thick disk is a fossil of a more violent history, nor can radial migration explain thick disks in all galaxies, most strikingly those which counterrotate with respect to the thin disk.
We examine the present-day total stellar-to-halo mass (SHM) ratio as a function of halo mass for a new sample of simulated field galaxies using fully cosmological, ΛCDM, high resolution SPH + N-Body simulations. These simulations include an explicit treatment of metal line cooling, dust and self-shielding, H 2 based star formation and supernova driven gas outflows. The 18 simulated halos have masses ranging from a few times 10 8 to nearly 10 12 M ⊙ . At z=0 our simulated galaxies have a baryon content and morphology typical of field galaxies. Over a stellar mass range of 2.2 × 10 3 -4.5 × 10 10 M ⊙ we find extremely good agreement between the SHM ratio in simulations and the presentday predictions from the statistical Abundance Matching Technique presented in Moster et al. (2012). This improvement over past simulations is due to a number systematic factors, each decreasing the SHM ratios: 1) gas outflows that reduce the overall SF efficiency but allow for the formation of a cold gas component 2) estimating the stellar masses of simulated galaxies using artificial observations and photometric techniques similar to those used in observations and 3) accounting for a systematic, up to 30% overestimate in total halo masses in DM-only simulations, due to the neglect of baryon loss over cosmic times. Our analysis suggests that stellar mass estimates based on photometric magnitudes can underestimate the contribution of old stellar populations to the total stellar mass, leading to stellar mass errors of up to 50% for individual galaxies. These results highlight the importance of using proper techniques to compare simulations with observations and reduce the perceived tension between the star formation efficiency in galaxy formation models and in real galaxies.
We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 147 stellar targets along the line of sight to the newly discovered "ultrafaint" stellar systems Tucana 2 (Tuc 2) and Grus 1 (Gru 1). Based on simultaneous estimates of line of sight velocity and stellar-atmospheric parameters, we identify 8 and 7 stars as probable members of Tuc 2 and and Gru 1, respectively. Our sample for Tuc 2 is sufficient to resolve an internal velocity dispersion of 8.6 2. . These results place Tuc 2 on chemodynamical scaling relations followed by dwarf galaxies, suggesting a dominant dark matter component with dynamical mass 2.7 10
We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r < 20 and proper-motion measurements derived from SDSS and POSS astrometry, including ∼170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ∼100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b| > 20 • ). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.
While many tensions between Local Group (LG) satellite galaxies and ΛCDM cosmology have been alleviated through recent cosmological simulations, the spatial distribution of satellites remains an important test of physical models and physical versus numerical disruption in simulations. Using the FIRE-2 cosmological zoom-in baryonic simulations, we examine the radial distributions of satellites with M * > 10 5 M around 8 isolated Milky Way-(MW) mass host galaxies and 4 hosts in LG-like pairs. We demonstrate that these simulations resolve the survival and physical destruction of satellites with M * 10 5 M . The simulations broadly agree with LG observations, spanning the radial profiles around the MW and M31. This agreement does not depend strongly on satellite mass, even at distances 100 kpc. Host-to-host variation dominates the scatter in satellite counts within 300 kpc of the hosts, while time variation dominates scatter within 50 kpc. More massive host galaxies within our sample have fewer satellites at small distances, likely because of enhanced tidal destruction of satellites via the baryonic disks of host galaxies. Furthermore, we quantify and provide fits to the tidal depletion of subhalos in baryonic relative to dark matter-only simulations as a function of distance. Our simulated profiles imply observational incompleteness in the LG even at M * 10 5 M : we predict 2-10 such satellites to be discovered around the MW and possibly 6-9 around M31. To provide cosmological context, we compare our results with the radial profiles of satellites around MW analogs in the SAGA survey, finding that our simulations are broadly consistent with most SAGA systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.