sEMG-based gesture recognition is useful for human–computer interactions, especially for technology supporting rehabilitation training and the control of electric prostheses. However, high variability in the sEMG signals of untrained users degrades the performance of gesture recognition algorithms. In this study, the hand posture recognition algorithm and radar plot-based visual feedback training were developed using multichannel sEMG sensors. Ten healthy adults and one bilateral forearm amputee participated by repeating twelve hand postures ten times. The visual feedback training was performed for two days and five days in healthy adults and a forearm amputee, respectively. Artificial neural network classifiers were trained with two types of feature vectors: a single feature vector and a combination of feature vectors. The classification accuracy of the forearm amputee increased significantly after three days of hand posture training. These results indicate that the visual feedback training efficiently improved the performance of sEMG-based hand posture recognition by reducing variability in the sEMG signal. Furthermore, a bilateral forearm amputee was able to participate in the rehabilitation training by using a radar plot, and the radar plot-based visual feedback training would help the amputees to control various electric prostheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.