Extending the resolution capability of 193nm lithography through the implementation of immersion has created new challenges for ArF B.A.R.C.s. The biggest of which will be controlling reflectivity over a wider range of incident angles of the incoming imaging rays. An optimum B.A.R.C thickness will depend on the angle of incidence of the light in the B.A.R.C. and will increase as the angle increases. At high angles different polarization have different optimum thicknesses. These confounding effects will make it increasingly difficult to control reflectivity over a range of angles through interference effects within a single homogenous B.A.R.C.Unlike single layer B.A.R.C.s, multilayer B.A.R.C.s are capable of suppressing reflectivity through a wide range of incident angles. In fact, remarkable improvements in antireflective properties can be achieved with respect to CD control and through angle performance with the simplest form of a multilayer B.A.R.C., a dual layer. Here we discuss the attributes of an all organic dual layer B.A.R.C. through simulations and preliminary experiments. One attribute of an organic over inorganic B.A.R.C. in high-NA lithography is its ability to planarize topography. ArF scanners designed to meet the needs of the 45nm node will have a very small depth-of-focus (DOF) which will require planar surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.