The solute -solvent interactions of glycine, 1,10-phenanthroline and 2,2-bipyridyl have been studied in 0 -60% vyv ethylene glycol -water media by a pH metric method. The protonation constants were estimated with the computer program MINIQUAD75. Selection of the best fit chemical model of the protonation equilibria is based on the standard deviation in protonation constants and residual analysis using a sum of squares of residuals in all mass-balance equations. The observed linear variation of protonation constants with the inverse of dielectric constant of the solvent mixture can be attributed to the dominance of the electrostatic forces. The distribution of species, protonation equilibria and effects of influential parameters on the protonation constants are also presented.
Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H + ] decreases the rate. Hence it can be inferred that the reactive species of the substrate is the zwitterionic form and that of the oxidant is [Fe(phen) 2 (H 2 O) 2 ] 3+. The proposed mechanism leads to the rate law as elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.