Nas negociações de crédito, o risco é um custo que está sempre presente e, portanto, precisa ser quantificado. Neste cenário, existem diversas ferramentas que se propõem à análise do crédito, algumas delas de ordem quantitativa. Neste sentido, esse artigo tem por objetivo propor um modelo capaz de prever a insolvência de empresas por meio da aplicação do modelo de redes neurais artificiais. O estudo é uma pesquisa exploratória de caráter quantitativo, aplicado à área financeira, utilizando-se o modelo tradicional e o modelo dinâmico de análise financeira. Com os resultados, obtiveram-se dois modelos: um contendo apenas as variáveis do modelo tradicional e outro com as variáveis do modelo tradicional e do modelo dinâmico de análise financeira. A comparação entre estes dois modelos de análise de crédito possibilitou verificar a contribuição das variáveis do modelo dinâmico para o modelo final. Os índices que mais contribuíram para acurácia do modelo proposto foram: Índice de Rentabilidade (X5) com 100% de exatidão; Índice de Estrutura de Capitais (X2) com 98,9% de acerto; e Índice do Modelo Dinâmico (X8) com 91% de precisão.Palavras-chave: Análise de balanços. Risco de crédito. Insolvência. Modelos de previsão.ABSTRACTIn credit negotiations the risk is a cost that is always present and therefore needs to be quantified. In this scenario, there are several tools that propose to credit analysis, some of them of quantitative order. In this sense, this article aims to propose a model capable of predicting the insolvency of companies by applying the artificial neural networks model. The study is exploratory research of quantitative character, applied to the financial area, using the traditional model and the dynamic model of financial analysis. The results obtained two models: one containing only the variables of the traditional model and another with the variables of the traditional model and the dynamic model of financial analysis. The comparison between these two models of credit analysis made it possible to verify the contribution of the variables of the dynamic model to the final model. The indexes that contributed most to the accuracy of the proposed model were: Profitability Index (X5) with 100% accuracy; Capital Structure Index (X2) with 98.9% accuracy and Dynamic Model Index (X8) with 91% accuracy.Keywords: Analysis of balance sheets. Credit risk. Insolvency. Forecasting models..
This article reviews the state of the literature on consumption at the bottom of the pyramid and summarizes the studies' suggestions for future research. This study was conducted using data from the Web of Science and Scopus databases with the help of CiteSpace and CitNetExplorer 1.0.0. This research is justified due to: (a) absence of a broad systematization of the theme; (b) contribution and encouragement of new researchers to take part in studies on the subject; and (c) indication of a broad international literature that can encourage studies on consumption at the base of the pyramid.
A atuação feminina no mercado de trabalho tem sido limitada por construções sociais. Sob tal perspectiva, o estudo teve como objetivo compreender os desafios enfrentados pelas mulheres na área de Tecnologia da Informação. Para tanto, foi realizada uma pesquisa qualitativa, na qual foram efetuadas dezenove entrevistas, a partir de um roteiro semiestruturado, procedendo com análise de conteúdo. As principais adversidades relatadas foram: falta de representatividade e de reconhecimento das opiniões femininas, dificuldade de interação com os colegas, assédio e preconceito. Ademais, foi identificada uma valorização dos ‘atributos’ considerados naturalmente femininos. O estudo contribui para a compreensão das relações de gênero que se estabelecem em um ambiente laboral masculinizado, bem como as estratégias e resistências demonstradas pelas mulheres para imergir nesse contexto.
The chapter aims to analyze how social media engages citizens in issues related to municipal management in Brazilian capital cities (27 cities). For that, Twitter data was collected, and descriptive analysis, text mining, and social network analysis were carried out. Results show the most frequent interactions regarded sharing posts, replies, and reactions were less frequent. Text mining suggested behavior on Twitter is related on the hot news, so discussions tend to be superficial; network analysis showed mayor accounts have more connections with users than the cities' official accounts, which suggests a necessity for personification on the conversation. Interactions are both centralized (started by the city) and decentralized (start by the citizen), but consist merely of information transmission and opinion sharing, and more complex kinds of participation, such as co-creation and decision-making were not observed. These findings show the potential of social media communication for public management and give insights on how to develop a successful policy to participate in social media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.