The paper presents a parametric study for the design of a reactive distillation column used to recover acetic
acid from dilute aqueous solution (30% w/w) through the formation of methyl acetate. The parameters such
as feed molar ratio, feed location, reflux ratio, and reboil ratio are varied by a one-parameter continuation
method, and the best possible configuration is suggested. Close to quantitative recovery may be obtained by
a proper choice of parameters, and reactive distillation can be successfully used for the recovery process. An
experimental support is provided to the recommended configuration. The system is highly nonlinear, and
solution multiplicity is realized in a certain parametric space. Apart from input parameters, a possible role of
modeling assumptions, kinetics, and phase equilibrium models on multiplicity has been discussed.
Researchers rely on metadata systems to prepare data for analysis. As the complexity of data sets increases and the breadth of data analysis practices grow, existing metadata systems can limit the efficiency and quality of data preparation. This article describes the redesign of a metadata system supporting the Fragile Families and Child Wellbeing Study on the basis of the experiences of participants in the Fragile Families Challenge. The authors demonstrate how treating metadata as data (i.e., releasing comprehensive information about variables in a format amenable to both automated and manual processing) can make the task of data preparation less arduous and less error prone for all types of data analysis. The authors hope that their work will facilitate new applications of machine-learning methods to longitudinal surveys and inspire research on data preparation in the social sciences. The authors have open-sourced the tools they created so that others can use and improve them.
Integrated hydrologic models solve coupled mathematical equations that represent natural processes, including groundwater, unsaturated, and overland flow. However, these models are computationally expensive. It has been recently shown that machine leaning (ML) and deep learning (DL) in particular could be used to emulate complex physical processes in the earth system. In this study, we demonstrate how a DL model can emulate transient, three-dimensional integrated hydrologic model simulations at a fraction of the computational expense. This emulator is based on a DL model previously used for modeling video dynamics, PredRNN. The emulator is trained based on physical parameters used in the original model, inputs such as hydraulic conductivity and topography, and produces spatially distributed outputs (e.g., pressure head) from which quantities such as streamflow and water table depth can be calculated. Simulation results from the emulator and ParFlow agree well with average relative biases of 0.070, 0.092, and 0.032 for streamflow, water table depth, and total water storage, respectively. Moreover, the emulator is up to 42 times faster than ParFlow. Given this promising proof of concept, our results open the door to future applications of full hydrologic model emulation, particularly at larger scales.
This paper motivates the development of sophisticated data-driven models for power magnetic material characteristics. Core losses and hysteresis loops are critical information in the design process of power magnetics, yet the physics behind them is not fully understood or directly applicable. Both losses and hysteresis loops change for each magnetic material and depend heavily on electrical operating conditions (e.g., waveform, frequency, amplitude, dc bias), mechanical properties (e.g., pressure, vibration), temperature, and geometry of the magnetic components, and in a nonlinear and coupled fashion. Understanding the complex and intertwined relationship these factors have on core loss is important for the development of accurate models and their applicability and limitations. Existing studies on power magnetics are usually developed based on a small amount of data and do not reveal the full magnetic behavior across a wide range of operating conditions. In this paper, based on a recently developed large-scale open-source database -MagNet -the core losses and hysteresis loops of Mn-Zn ferrites are analyzed over a wide range of amplitudes, frequencies, waveform shapes, dc bias levels, and temperatures, to quantify the complexity of modeling magnetic core losses, amplitude permeability, and hysteresis loops and provide guidelines for modeling power magnetics with datadriven methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.