In this paper, we investigate the impact of random dopant fluctuation (RDF) on the statistical variations in negative capacitance MOSFETs (NCFETs) through a device simulation coupled with the Landau–Khalatnikov (LK) equation. Compact models for feedback mechanisms that are based on the internal gate voltage amplification in NCFETs are proposed. The results show that internal voltage amplification plays a decisive role in performance improvement of device variability. Further, our simulation study demonstrates that owing to the feedback mechanism, the dispersions of the performance parameters in NCFETs exhibit different statistical distribution characteristics compared to their MOSFET counterparts. Our study may provide further insight regarding device and/or circuit designs utilizing NCFETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.