In recent years, graphene nanomesh (GNM), a material with high flexibility and tunable electronic properties, has attracted considerable attention from researchers due to its wide applications in the fields of nanoscience and nanotechnology. Herein, we have processed large-area, uniform arrays of rectangular graphene nanomesh (r-GNM) and circular graphene nanomesh (c-GNM) with different neck widths by electron beam lithography (EBL). The electronic properties of those high-quality GNM samples have been characterized systematically. Electrical measurements illustrated that top-gated field effect transistors with different neck widths of the GNM possessed different Ion/Ioff ratios. In particular, the devices based on r-GNM with a neck width of 30 nm were found to possess the largest Ion/Ioff ratio of ~ 100, and the band gap of the r-GNM was estimated to be 0.23 eV, which, to the best of authors’ knowledge, is the highest value for graphene ribbons or a GNM with a neck width under 30 nm. Furthermore, the terahertz response of large-area r-GNM devices based on the photoconductive effect was estimated to be 10 mA/W at room temperature. We also explored the practical application of terahertz imaging, showing that the devices can be used in a feasible setting with a response time < 20 ms; this enables accurate and fast imaging of macroscopic samples.
Herein, the effects of width and boundary defects on the energy gap of graphene nanoribbons (GNRs) have been explored and theoretically investigated by means of semi-empirical atomic basis Extended Hückel method. Due to the existence of boundary defects, the energy gap of GNRs is mainly determined by the width of graphene nanoribbons for armchair graphene nanoribbons (AGNRs) or zigzag graphene nanoribbons (ZGNRs). Interestingly, the energy gap of AGNRs with a 120° V-type defect displays the monotone decreasing tendency when the width reaches to 2 nm, while the energy gap of intrinsic AGNRs is oscillatory. At the same time, the energy gap of U-type defected ZGNRs is opened, which differs from the zero energy gap characteristics of the intrinsic zigzag graphene. Furthermore, the size of energy gap of the defected AGNRs and ZGNRs with the same width is proved to be very close. Calculation results demonstrate that the energy gap of GNRs is just inversely proportional to the width and has little to do with the crystallographic direction. All the findings above provide a basis for energy gap engineering with different edge defects in GNRs and signify promising prospects in graphene-based semiconductor electronic devices.
High sensitivity detection of terahertz waves can be achieved with a graphene nanomesh as grating to improve the coupling efficiency of the incident terahertz waves and using a graphene nanostructure energy gap to enhance the excitation of plasmon. Herein, the fabrication process of the FET THz detector based on the rectangular GNM (r-GNM) is designed, and the THz detector is developed, including the CVD growth and the wet-process transfer of high quality monolayer graphene films, preparation of r-GNM by electron-beam lithography and oxygen plasma etching, and the fabrication of the gate electrodes on the Si3N4 dielectric layer. The problem that the conductive metal is easy to peel off during the fabrication process of the GNM THz device is mainly discussed. The photoelectric performance of the detector was tested at room temperature. The experimental results show that the sensitivity of the detector is 2.5 A/W (@ 3 THz) at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.