A nanoelectrode array based on vertically aligned multiwalled carbon nanotubes (MWNTs) embedded in SiO 2 is used for ultrasensitive DNA detection. Characteristic electrochemical behaviors are observed for measuring bulk and surface-immobilized redox species. Sensitivity is dramatically improved by lowering the nanotube density. Oligonucleotide probes are selectively functionalized to the open ends of nanotubes. The hybridization of subattomole DNA targets can be detected by combining such electrodes with Ru(bpy) 3 2+ mediated guanine oxidation.
We present an approach to tackle long-standing problems in contacts, thermal damage, pinhole induced short circuits and interconnects in molecular electronic device fabrication and integration. Our approach uses metallic nanowires as top electrodes to connect and interconnect molecular wires assembled on electrode arrays in crossbar architectures. Using this simple and reliable approach, we have revealed intriguing memory effects for several different molecular wires, and demonstrated their applications in molecular memory arrays. Our approach has great potential to be used for fast screening of molecular wire candidates and construction of molecular devices.
The rapid development in nanomaterials and nanotechnologies has provided many new opportunities for electroanalysis. We review our recent results on the fabrication and electroanalytical applications of nanoelectrode arrays based on vertically aligned multi-walled carbon nanotubes (MWCNTs). A bottom-up approach is demonstrated, which is compatible with Si microfabrication processes. MWCNTs are encapsulated in SiO 2 matrix leaving only the very end exposed to form inlaid nanoelectrode arrays. The electrical and electrochemical properties have been characterized, showing well-defined quasireversible nanoelectrode behavior. Ultrasensitive detection of small redox molecules in bulk solutions as well as immobilized at the MWCNT ends is demonstrated. A label-free affinity-based DNA sensor has shown extremely high sensitivity approaching that of fluorescence techniques. This platform can be integrated with microelectronics and microfluidics for fully automated microchips.
Multilevel molecular memory devices were proposed and demonstrated for nonvolatile data storage up to three bits (eight levels) per cell, in contrast to the standard one-bit-per-cell (two levels) technology. In the demonstration, charges were precisely placed at up to eight discrete levels in redox active molecules self-assembled on single-crystal semiconducting nanowire field-effect transistors. Gate voltage pulses and current sensing were used for writing and reading operations, respectively. Charge storage stability was tested up to retention of 600 h, as compared to the longest retention of a few hours previously reported for one-bit-per-cell molecular memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.