Abstract:In this paper, a distributed synergetic control based on multi-agent systems is proposed to solve the problems of frequency and voltage errors, system stability and power sharing accuracy in the traditional droop control of microgrids. Starting with power flow equations, we build the secondary-order dynamic model of DG, which consists of three parts: (1) active power allocation; (2) active power-frequency; and (3) reactive power-voltage droop control. Considering time-delays in communication networks, a leaderless synergetic control algorithm is proposed to allocate the active power in inverse proportion to the droop coefficient, and the synergetic control with a virtual leader is proposed to control the system frequency and voltage to keep at the expected value. Besides, the direct Lyapunov method is introduced to verify the globally asymptotical stability. Moreover, the impacts of communication disturbance are also discussed from the aspects of control precision and system stability. Finally, based on a test microgrid, numerous cases are designed as illustration, and the simulation results validate the proposed method.
Because the accuracy of the existing airborne navigation is lacking in the polar region, it is difficult to ensure the safety and reliability of the aircraft when it is flying over the polar region. The integrated navigation system based on the inertial navigation technology uses multi-information fusion to assist collaborative navigation and obtain an indirect grid navigation algorithm that combines the azimuth navigation algorithm and the grid navigation algorithm to solve the existing problems. This paper analyzes the principle of the inertial navigation system in the polar region, the semiphysical simulation experiments are carried out by using the navigation theory and the background engineering, and the accuracies of the integrated navigation system of the indirect grid frame in the polar region and the integrated navigation system in the middle and low latitudes are consistent, which verifies the feasibility and effectiveness of the SINS/CNS/GPS integrated navigation system in the polar region. In addition, the paper provides the theoretical basis and the application of engineering to achieve the SINS/CNS/GPS integrated navigation system in the polar region.
Hemispherical Resonator Gyro (HRG) is a new type gyro with high precision, high reliability, shock resistance, no need of preheating, short start time, and long life. It is a kind of vibrating gyro with standing wave rotating along the sensitive base of annular precession, has a unique application prospect in the field of high precision inertial sensors, and is widely used in unmanned aerial vehicle control in complex environments. Based on the theory of the structure characteristics of the hemispherical resonator, the mathematical model of energy of the resonator is established to research the rule of resonant frequency when the hemispherical resonator is rotated around the central axis. In this paper, the influence of precession factor, which are the top angle, the bottom angle, and wall unevenness of the hemispherical resonator, are analyzed. A series of hemispherical resonator models are constructed by ANSYS software to prove the results of theoretical research. The simulation results show that precession factor of the hemispherical resonator is more sensitive of the top angle than the bottom angle, and the error of angular velocity which is caused by the change of the top angle is larger than that which is caused by the change of the bottom angle.
In practical engineering, the frequency splitting of Hemispherical Resonator Gyro (HRG) caused by uneven mass distribution seriously affects the precision of HRG. So, the inherent frequency is an important parameter of micro-Hemispherical Resonator Gyro (m-HRG). In the processing of hemispherical resonator, there are some morphological errors and internal defects in the hemispherical resonator, which affect the inherent frequency and the working mode of m-HRG, and reduce the precision and performance of m-HRG. In order to improve the precision and performance of m-HRG, the partial differential equation of the hemispherical resonator is solved, and the three-dimensional model using ANSYS software accurately reflected the actual shape is established in this paper. Then, the mode of hemispherical resonator in ideal state and uneven mass distribution state are simulated and analyzed. The frequency splitting mechanism of the hemispherical resonator is determined by calculation and demonstration, and the frequency splitting of the hemispherical resonator is suppressed by partial mass elimination. The results show that the absolute balance of energy can ensure the high-quality factor and the minimum frequency splitting of the hemispherical resonator. Therefore, during the processing of hemispherical resonator, the balance of mass should be achieved as much as possible to avoid various surface damage, internal defects and uneven mass distribution to guarantee the high-quality factor Q and minimum frequency splitting of hemispherical resonator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.