Ion transport in
crystalline fast ionic conductors is a complex
physical phenomenon. Certain ionic species (e.g., Ag+,
Cu+, Li+, F–, O2–, H+) in a solid crystalline framework can move as fast
as in liquids. This property, although only observed in a limited
number of materials, is a key enabler for a broad range of technologies,
including batteries, fuel cells, and sensors. However, the mechanisms
of ion transport in the crystal lattice of fast ionic conductors are
still not fully understood despite the substantial progress achieved
in the last 40 years, partly because of the wide range of length and
time scales involved in the complex migration processes of ions in
solids. Without a comprehensive understanding of these ion transport
mechanisms, the rational design of new fast ionic conductors is not
possible. In this review, we cover classical and emerging characterization
techniques (both experimental and computational) that can be used
to investigate ion transport processes in bulk crystalline inorganic
materials which exhibit predominant ion conduction (i.e., negligible
electronic conductivity) with a primary focus on literature published
after 2000 and critically assess their strengths and limitations.
Together with an overview of recent understanding, we highlight the
need for a combined experimental and computational approach to study
ion transport in solids of desired time and length scales and for
precise measurements of physical parameters related to ion transport.
Amyloid-β oligomers (AβOs) are the most important toxic species in the brain of Alzheimer's disease (AD) patient. AβOs, therefore, are considered reliable molecular biomarkers for the diagnosis of AD. Herein, we reported a simple and sensitive electrochemical method for the selective detection of AβOs using silver nanoparticles (AgNPs) as the redox reporters and PrP(95-110), an AβOs-specific binding peptide, as the receptor. Specifically, adamantine (Ad)-labeled PrP(95-110), denoted as Ad-PrP(95-110), induced the aggregation and color change of AgNPs and the follow-up formation of a network of Ad-PrP(95-110)-AgNPs. Then, Ad-PrP(95-110)-AgNPs were anchored onto a β-cyclodextrin (β-CD)-covered electrode surface through the host-guest interaction between Ad and β-CD, thus producing an amplified electrochemical signal through the solid-state Ag/AgCl reaction by the AgNPs. In the presence of AβOs, Ad-PrP(95-110) interacted specifically with the AβOs, thus losing the capability to bind AgNPs and to induce the formation of an AgNPs-based network on the electrode surface. Consequently, the electrochemical signal decreased with an increase in the concentration of AβOs in the range of 20 pM to 100 nM. The biosensor had a detection limit of 8 pM and showed no response to amyloid-β monomers (AβMs) and fibrils (AβFs). On the basis of the well-defined and amplified electrochemical signal of the AgNPs-based network architecture, these results should be valuable for the design of novel electrochemical biosensors by marrying specific receptors.
The heat absorbed during the mixing of binary solutions of pairs of univalent electrolytes with common ions has been measured. The heat effects are somewhat smaller than those observed when electrolytes without common ions are mixed but are by no means negligible. When both of two cations are small, or when both are large, heat is generally absorbed ; when one is large and the other small heat is usually evolved.The molal heats of mixing when one molal solutions are mixed are approximately quadratic functions of the solute mole fraction, x3. The relative partial molal enthalpies are therefore approximately linear functions of x3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.