This paper introduces and evaluates the use of Gaussian mixture models (GMMs) for multiple limb motion classification using continuous myoelectric signals. The focus of this work is to optimize the configuration of this classification scheme. To that end, a complete experimental evaluation of this system is conducted on a 12 subject database. The experiments examine the GMMs algorithmic issues including the model order selection and variance limiting, the segmentation of the data, and various feature sets including time-domain features and autoregressive features. The benefits of postprocessing the results using a majority vote rule are demonstrated. The performance of the GMM is compared to three commonly used classifiers: a linear discriminant analysis, a linear perceptron network, and a multilayer perceptron neural network. The GMM-based limb motion classification system demonstrates exceptional classification accuracy and results in a robust method of motion classification with low computational load.
Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQbased comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8°C and subsequently allowed to recover for 24 h at 28°C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis. Molecular & Cellular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.