Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black carbon materials to black carbon particles may enhance the particles' light absorption by 50 to 60% by refracting and reflecting light. Real world experimental evidence for this 'lensing' effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black carbon particles with a ratio greater than 3, which is typical of biomass burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalised hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black carbon particles is determined by the particles' mass ratio of non-black carbon to black carbon.Atmospheric black carbon (BC) makes the second largest single contribution after CO 2 to climate forcing in the present-day atmosphere 1 . Previous detailed modelling and laboratory studies have shown that weakly absorbing non-BC materials contained within the same particles as BC can significantly enhance the absorption per unit mass of the latter through refraction and internal reflections, sometimes referred to as the 'lensing effect' 2,3 . A "coreshell" description 4 has often been applied to describe this effect when coatings envelop the central BC core, but this oversimplifies the complex particle morphologies 5 . The non-BC components may not be evenly distributed and the BC core is not necessarily completely enclosed, and as such the absorption enhancement predicted using the core-shell approach could greatly overestimate the real value 3 . Microscopy 5,6 can examine BC microphysical properties but has limited quantitative capability and may evaporate semi-volatile materials.By detecting the remaining non-BC fragment after laser induced incandescence with a single particle soot photometer (SP2 7 , DMT inc.), Sedlacek et al. 8 and Moteki et al. 9 reported the non-core-shell structure of some BC particles, however they did not provide an appropriate model approach to estimate optical properties. Measurement of single BC particle mass ratioIn this study, for the first time we quantify the mixing state of individual BC particles using morphology-independent measurements of the total particle mass (M p ) and the mass of the refractory black carbon, rBC (M rBC ) from a variety of laboratory and field experiments. We determined the mass ratio, M R (= M non-BC /M rBC ), where M non-BC is the mas...
Emissions from traditional cookstoves are a major health concern in developing world households. Improved cookstoves can reduce fuel use and pollutant emissions and here we compare three types of improved cookstoves widely used in Sub-Saharan Africa. These are a raised-bed charcoal stove, a rocket-type stove using wood and straw, and a gasifier stove. Laboratory measurements were made of the main gaseous pollutants, particle size distribution and composition. The genotoxicity of the particles was assessed using a comet assay. The rocket-type stove using dry wood had the highest emission factors for particulate matter and NO X. Emissions of CO and CH 4 were a factor of 6-7 higher from the charcoal stove compared with the other stoves tested in this work, and also higher for burning high moisture wood. Fuel properties were critical for emitted particle size, and for the emissions of NO X , black carbon and organic matter.
Designs of "improved" stoves are introduced recently to benefit the solid fuel consumption of cooking activities in developing countries, but the uncertainties concerning the combustion processes and particulate emissions remain poorly characterized. To help understand this, combustion in three examples of "improved" African cookstoves was investigated in the laboratory. A typical European heating stove was included for comparison purpose. Detailed aerosol emissions were studied in real-time with an Aerosol Mass Spectrometer and Single Particle Soot Photometer, to explore interactions between black carbon (BC) and organic carbon aerosols, which were parametrized according to modified combustion efficiency (MCE), a common metric used within the atmospheric emission community. Greater than 50% of the total organic matter (OM) was found in BC-containing particles when MCE was >0.95 for dry oak and coal fuels, whereas at lower MCE, over 80% of the total OM for most of the fuels existed in particles without detectable BC. When the OM mass fraction of total particulate matter (PM) > 0.9, the mass ratio of OM to refractory BC in BC-containing particles was about 2-3, but only ∼0.8 when OM mass fraction <0.9. These findings are not currently included in models and such information should be considered in the future emission scenarios.
Abstract. Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires/fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrate chemistry was observed during the bonfire night with nitrogen containing compounds in both gas and aerosol phase and further N2O5 and Aethalometer. This hypothesis was tested by doing multilinear regressions between babs_470wb and BBOA, sPON_ME2 and pPON_ME2. Our results suggest that sPON_ME2 does not absorb light at 470 nm while pPON_ME2 and LVOOA absorb light at 470 nm over that of black carbon. This may inform black carbon (BC) source apportionment studies fromAethalometer measurements, through investigation of the brown carbon contribution to babs_470wb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.