Hafnium oxide (HfO 2) thin films have been made by atomic vapor deposition (AVD) onto Si substrates under different growth temperature and oxygen flow. The effect of different growth conditions on the structure and optical characteristics of deposited HfO 2 film has been studied using X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GIXRD) and variable angle spectroscopic ellipsometry (VASE). The XPS measurements and analyses revealed the insufficient chemical reaction at the lower oxygen flow rate and the film quality improved at higher oxygen flow rate. Via GIXRD, it was found that the HfO 2 films on Si were amorphous in nature, as deposited at lower deposition temperature, while being polycrystalline at higher deposition temperature. The structural phase changes from interface to surface were demonstrated. The values of optical constants and bandgaps and their variations with the growth conditions were determined accurately from VASE and XPS. All analyses indicate that appropriate substrate temperature and oxygen flow are essential to achieve high quality of the AVD-grown HfO 2 films.
A series of ultrathin InSb films grown on GaAs by low-pressure metalorganic chemical vapor deposition with different V/III ratios were investigated thoroughly using spectroscopic ellipsometry (SE), X-ray diffraction, and synchrotron radiation X-ray absorption spectroscopy. The results predicted that InSb films on GaAs grown under too high or too low V/III ratios are with poor quality, while those grown with proper V/III ratios of 4.20–4.78 possess the high crystalline quality. The temperature-dependent SE (20–300°C) and simulation showed smooth variations of SE spectra, optical constants (n, k, e1, and ε2), and critical energy points (E1, E1+Δ1, E′0, E2, and E′1) for InSb film when temperature increased from 20°C to 250°C, while at 300°C, large changes appeared. Our study revealed the oxidation of about two atomic layers and the formation of an indium-oxide (InO) layer of ∼5.4 nm. This indicates the high temperature limitation for the use of InSb/GaAs materials, up to 250°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.