Arterial spin labeling (ASL) MRI is increasingly used in research and clinical settings. The purpose of this work is to develop a cloud‐based tool for ASL data processing, referred to as ASL‐MRICloud, which may be useful to the MRI community. In contrast to existing ASL toolboxes, which are based on software installation on the user's local computer, ASL‐MRICloud uses a web browser for data upload and results download, and the computation is performed on the remote server. As such, this tool is independent of the user's operating system, software version, and CPU speed. The ASL‐MRICloud tool was implemented to be compatible with data acquired by scanners from all major MRI manufacturers, is capable of processing several common forms of ASL, including pseudo‐continuous ASL and pulsed ASL, and can process single‐delay and multi‐delay ASL data. The outputs of ASL‐MRICloud include absolute and relative values of cerebral blood flow, arterial transit time, voxel‐wise masks indicating regions with potential hyper‐perfusion and hypo‐perfusion, and an image quality index. The ASL tool is also integrated with a T1‐based brain segmentation and normalization tool in MRICloud to allow generation of parametric maps in standard brain space as well as region‐of‐interest values. The tool was tested on a large data set containing 309 ASL scans as well as on publicly available ASL data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
SUMMARYThis paper investigates the implications of designing for uniform hazard versus uniform risk for lightframe wood residential construction subjected to earthquakes in the United States. Using simple structural models of one-story residences with typical lateral force-resisting systems (shear walls) found in buildings in western, eastern and central regions of the United States as illustrations, the seismic demands are determined using nonlinear dynamic time-history analyses, whereas the collapse capacities are determined using incremental dynamic analyses. The probabilities of collapse, conditioned on the occurrence of the maximum considered earthquakes and design earthquakes stipulated in ASCE Standard 7-05, and the collapse margins of these typical residential structures are compared for typical construction practices in different regions in the United States. The calculated collapse inter-story drifts are compared with the limits stipulated in FEMA 356/ASCE Standard 41-06 and observed in the recent experimental testing. The results of this study provide insights into residential building risk assessment and the relation between building seismic performance implied by the current earthquake-resistant design and construction practices and performance levels in performance-based engineering of light-frame wood construction being considered by the SEI/ASCE committee on reliability-based design of wood structures. Further code developments are necessary to achieve the goal of uniform risk in earthquake-resistant residential construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.