At least 50% of patients with tuberous sclerosis complex present with intractable epilepsy; for these patients, resective surgery is a treatment option. Here, we report a nationwide multicentre retrospective study and analyse the long-term seizure and neuropsychological outcomes of epilepsy surgery in patients with tuberous sclerosis complex. There were 364 patients who underwent epilepsy surgery in the study. Patients’ clinical data, postoperative seizure outcomes at 1-, 4-, and 10-year follow-ups, preoperative and postoperative intelligence quotients, and quality of life at 1-year follow-up were collected. The patients’ ages at surgery were 10.35 ± 7.70 years (range: 0.5–47). The percentage of postoperative seizure freedom was 71% (258/364) at 1-year, 60% (118/196) at 4-year, and 51% (36/71) at 10-year follow-up. Influence factors of postoperative seizure freedom were the total removal of epileptogenic tubers and the presence of outstanding tuber on MRI at 1- and 4-year follow-ups. Furthermore, monthly seizure (versus daily seizure) was also a positive influence factor for postoperative seizure freedom at 1-year follow-up. The presence of an outstanding tuber on MRI was the only factor influencing seizure freedom at 10-year follow-up. Postoperative quality of life and intelligence quotient improvements were found in 43% (112/262) and 28% (67/242) of patients, respectively. Influence factors of postoperative quality of life and intelligence quotient improvement were postoperative seizure freedom and preoperative low intelligence quotient. The percentage of seizure freedom in the tuberectomy group was significantly lower compared to the tuberectomy plus and lobectomy groups at 1- and 4-year follow-ups. In conclusion, this study, the largest nationwide multi-centre study on resective epilepsy surgery, resulted in improved seizure outcomes and quality of life and intelligence quotient improvements in patients with tuberous sclerosis complex. Seizure freedom was often achieved in patients with an outstanding tuber on MRI, total removal of epileptogenic tubers, and tuberectomy plus. Quality of life and intelligence quotient improvements were frequently observed in patients with postoperative seizure freedom and preoperative low intelligence quotient.
High frequency oscillations (HFOs) are considered as biomarker for epileptogenicity. Reliable automation of HFOs detection is necessary for rapid and objective analysis, and is determined by accurate computation of the baseline. Although most existing automated detectors measure baseline accurately in channels with rare HFOs, they lose accuracy in channels with frequent HFOs. Here, we proposed a novel algorithm using the maximum distributed peak points method to improve baseline determination accuracy in channels with wide HFOs activity ranges and calculate a dynamic baseline. Interictal ripples (80-200[Formula: see text]Hz), fast ripples (FRs, 200-500[Formula: see text]Hz) and baselines in intracerebral EEGs from seven patients with intractable epilepsy were identified by experienced reviewers and by our computer-automated program, and the results were compared. We also compared the performance of our detector to four well-known detectors integrated in RIPPLELAB. The sensitivity and specificity of our detector were, respectively, 71% and 75% for ripples and 66% and 84% for FRs. Spearman's rank correlation coefficient comparing automated and manual detection was [Formula: see text] for ripples and [Formula: see text] for FRs ([Formula: see text]). In comparison to other detectors, our detector had a relatively higher sensitivity and specificity. In conclusion, our automated detector is able to accurately calculate a dynamic iEEG baseline in different HFO activity channels using the maximum distributed peak points method, resulting in higher sensitivity and specificity than other available HFO detectors.