To explore the optimum conditions for the extraction of anthocyanins and flavonols from bog bilberry (Vaccinium uliginosum L.) marc on a single-factor experimental basis, a response surface methodology was adopted for this intensive study. The extraction procedure was carried out in a Waring blender and followed an ultrasonic bath, and the natural antioxidant carnosic acid was added to inhibit oxidation. The optimum extraction conditions were as follows: a volume fraction of ethanol of 70%, an antioxidant content of 0.02% (the mass of sample) carnosic acid, a liquid–solid ratio of 16 mL/g, a homogenization time of 3 min, a reaction temperature of 55 °C, an ultrasound irradiation frequency of 80 kHz, an ultrasound irradiation power of 200 W, and an ultrasound irradiation time of 40 min. Satisfactory yields of anthocyanins (13.95 ± 0.37 mg/g) and flavonols (3.51 ± 0.16 mg/g) were obtained. The experimental results showed that the carnosic acid played an effective antioxidant role in the extraction process of anthocyanins and flavonols with a green and safety guarantee.
Understory vegetation hosts high biodiversity and plays a critical role in the ecosystem processes of boreal forests. However, the drivers of understory plant diversity in this high-latitude ecosystem remain uncertain. To investigate the influences of forest type and latitude on understory beta diversity at different scales, we quantified the species composition of Vaccinium uliginosum Linnaeus communities under broadleaf and coniferous forests at two latitudes at the quadrat (2 × 2 m) and plot (10 × 10 m) scales in the Greater Xing’an Mountains, NE China. At the quadrat scale, species alpha diversity of V. uliginosum communities was higher in broadleaf forests than that in coniferous forests at both latitudes. The differences in species beta diversity (the Sørensen’s dissimilarity) in two forest types depended on the latitude: beta diversity in broadleaf forests was higher than that in coniferous forests at the higher latitude, while beta diversity in coniferous forests was higher at the lower latitude. At the plot scale, alpha and beta diversity of V. uliginosum communities decreased from broadleaf forests to coniferous forests at the higher latitude, and they did not show significant differences between forest types at the lower latitude. These results indicate the interactive effects of forest type and latitude on beta diversity of understory vegetation. Moreover, the influences of forest type and latitude on species alpha and beta diversity were different across the two spatial scales, suggesting that the assembly mechanisms underlying species diversity may be different at different scales. Understanding the maintenance of understory vegetation diversity will benefit the conservation and management of boreal forests.
Morchella is a kind of medicinal and edible homologous fungia that is rich in multiple metabolites. The metabolites from Morchella are a kind of essential substance because of their biological activities. In this study, Morchella fruit bodies and mycelium were selected to identify their metabolites. The primary metabolites of the two experimental group were analyzed using a method of widely targeted metabolome based on UPLC-ESI-MS/MS. A total of 354 different metabolites, including 188 upregulated metabolites and 166 downregulated metabolites, were characterized. Further, the main 20 metabolic pathways of the metabolites were analyzed. The first 9 ones are tyrosine metabolites, thyroid hormone biosynthetic pathway, phenylalanine metabolites, linoleic metabolites synthetic pathway, glycerophosphate metabolic pathway, choline in tumors, methyl butyl metabolites, arginine synthetic pathway, arginine, arginine and proline metabolites. This study provides theoretical basis for the analysis of metabolic pathway of Morchella fruit bodies and mycelium that serving for further research of their medicinal mechanism and effective components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.