Remote sensing image object detection and instance segmentation are widely valued research fields. A convolutional neural network (CNN) has shown defects in the object detection of remote sensing images. In recent years, the number of studies on transformer-based models increased, and these studies achieved good results. However, transformers still suffer from poor small object detection and unsatisfactory edge detail segmentation. In order to solve these problems, we improved the Swin transformer based on the advantages of transformers and CNNs, and designed a local perception Swin transformer (LPSW) backbone to enhance the local perception of the network and to improve the detection accuracy of small-scale objects. We also designed a spatial attention interleaved execution cascade (SAIEC) network framework, which helped to strengthen the segmentation accuracy of the network. Due to the lack of remote sensing mask datasets, the MRS-1800 remote sensing mask dataset was created. Finally, we combined the proposed backbone with the new network framework and conducted experiments on this MRS-1800 dataset. Compared with the Swin transformer, the proposed model improved the mask AP by 1.7%, mask APS by 3.6%, AP by 1.1% and APS by 4.6%, demonstrating its effectiveness and feasibility.
For large-scale integrated electronic equipment, the complex operating mechanisms make fault detection very difficult. Therefore, it is important to accurately identify analog circuit faults in a timely manner. To overcome this problem, this paper proposes a novel fault diagnosis method based on the deep belief network (DBN) and restricted Boltzmann machine (RBM) optimized by the gray wolf optimization (GWO) algorithm. First, DBN is used to extract the deep features of the analog circuit output signal. Then, GWO is used to optimize the penalty factor c and kernel parameter g of support vector machine (SVM). Finally, GWO-SVM is used to diagnose the signal features extracted by the DBN. Fault diagnosis simulation was conducted for the Sallen–Key band-pass filter and a four-opamp biquad highpass filter. The experimental results show that compared with the existing algorithms, the algorithm proposed in this paper improves the accuracy of Sallen–Key bandpass filter circuit to 100% and shortens the fault diagnosis time by about 90%; for four-opamp biquad highpass filter, the accuracy rate has increased to 99.68%, and the fault diagnosis time has been shortened by approximately 75%, and reduce hundreds of iterations. Moreover, the experimental results reveal that the proposed fault diagnosis method greatly improves the accuracy of analog circuit fault diagnosis, which solves a major problem in analog circuitry and has great significance for the future development of relevant applications.
The wide range, complex background, and small target size of aerial remote sensing images results in the low detection accuracy of remote sensing target detection algorithms. Traditional detection algorithms have low accuracy and slow speed, making it difficult to achieve the precise positioning of small targets. This paper proposes an improved algorithm based on You Only Look Once (YOLO)-v3 for target detection of remote sensing images. Due to the difficulty in obtaining the datasets, research on small targets for complex images, such as airplanes and ships, is the focus of research. To make up for the problem of insufficient data, we screen specific types of training samples from the DOTA (Dataset of Object Detection in Aerial Images) dataset and select small targets in two different complex backgrounds of airplanes and ships to jointly evaluate the optimization degree of the improved network. We compare the improved algorithm with other state-of-the-art target detection algorithms. The results show that the performance indexes of both datasets are ameliorated by 1–3%, effectively verifying the superiority of the improved algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.