In this study, 1,2,4,6-tetra-O-galloyl-β-D-glucose (1246TGG), a polyphenolic compound isolated from traditional Chinese medicine Phyllanthus emblica L. (Euphorbiaceae), was found to inhibit herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infection at different magnitudes of activity in vitro. Further studies revealed that 1246TGG directly inactivated HSV-1 particles, leading to the failure of early infection, including viral attachment and penetration. 1246TGG also suppressed the intracellular growth of HSV-1 within a long period post-infection (from 0 h p.i. to 12 h p.i.), while it might exert an antiviral effect mainly before 3 h p.i. It inhibited HSV-1 E and L gene expressions as well as viral DNA replication but did not affect the RNA synthesis of IE gene in our study. Also, in the presence of 1246TGG, the synthesis of viral protein was reduced. Taken together, it was suggested that 1246TGG might exert anti-HSV activity both by inactivating extracellular viral particles and by inhibiting viral biosynthesis in host cells. These results warrant further studies on the antiviral mechanisms of 1246TGG and suggest that it might be a candidate for HSV therapy.
BackgroundNumerous host cellular factors are exploited by viruses to facilitate infection. Our previous studies and those of others have shown heat-shock protein 90 (Hsp90), a cellular molecular chaperone, is involved in herpes simplex virus (HSV)-1 infection. However, the function of the dominant Hsp90 isoform and the relationship between Hsp90 and HSV-1 α genes remain unclear.Methods and resultsHsp90α knockdown or inhibition significantly inhibited the promoter activity of HSV-1 α genes and downregulated virion protein 16(VP16) expression from virus and plasmids. The Hsp90α knockdown-induced suppression of α genes promoter activity and downregulation of α genes was reversed by VP16 overexpression, indicating that Hsp90α is involved in VP16-mediated transcription of HSV-1 α genes. Co-immunoprecipitation experiments indicated that VP16 interacted with Hsp90α through the conserved core domain within VP16. Based on using autophagy inhibitors and the presence of Hsp90 inhibitors in ATG7−/− (autophagy-deficient) cells, Hsp90 inhibition-induced degradation of VP16 is dependent on macroautophagy-mediated degradation but not chaperone-mediated autophagy (CMA) pathway. In vivo studies demonstrated that treatment with gels containing Hsp90 inhibitor effectively reduced the level of VP16 and α genes, which may contribute to the amelioration of the skin lesions in an HSV-1 infection mediated zosteriform model.ConclusionOur study provides new insights into the mechanisms by which Hsp90α facilitates the transactivation of HSV-1 α genes and viral infection, and highlights the importance of developing selective inhibitors targeting the interaction between Hsp90α and VP16 to reduce toxicity, a major challenge in the clinical use of Hsp90 inhibitors.Electronic supplementary materialThe online version of this article (10.1186/s10020-018-0066-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.