In this paper, we present the design and test results of LOCx2, a transmitter ASIC for the ATLAS Liquid Argon Calorimeter trigger upgrade. LOCx2 consists of two channels and each channel encodes ADC data with an overhead of 14.3% and transmits serial data at 5.12 Gbps with a latency of less than 27.2 ns. LOCx2 is fabricated with a commercial 0.25-µm Silicon-on-Sapphire CMOS technology and is packaged in a 100-pin QFN package. The power consumption of LOCx2 is about 843 mW.
In this paper, we present the design and test results of an encoder integrated circuit for the ATLAS Liquid Argon Calorimeter trigger upgrade. The encoder implements a low-latency and low-overhead line code called LOCic. The encoder operates at 320 MHz with a latency of no greater than 21 ns. The overhead of the encoder is 14.3%. The encoder is an important block of the transmitter ASIC LOCx2, which is prototyped with a commercial 0.25-µm Siliconon-Sapphire CMOS technology and packaged in a 100-pin QFN package.
A: This paper presents a 10-bit 250-MS/s time-interleaved pipelined analog-to-digital data converter (ADC). A distributed clocking scheme is developed to eliminate timing skew between channels without introducing load capacitance to the driving buffer of the ADC. The channel offset and gain mismatch errors are calibrated in digital domain. In addition, a switch-embedded opampsharing technique is developed to reduce the ADC power consumption and eliminate the memory effect. The simulated SNDR and SFDR are 61.84 dB and 78.2 dB, respectively. The ADC core consumes 28 mW under a 1.8 V supply at 250 MS/s sampling rate.
This paper presents a 12.5 Gbps serial link transmitter application-specific integrated circuit (ASIC) designed in a 65-nm CMOS technology. The ASIC mainly includes an LC-VCO phase-locked-loop (PLL), a 16:1 serializer and a CML driver. Simulation results show that the PLL achieves a 7-to-14 GHz frequency tuning range and an RMS jitter of 0.4 pS. The serializer has a deterministic jitter of 9 pS and a programmable output swing from 200 mV to 1.0 V. The PLL and the serializer consumes 39.6 mW and 73 mW from a 1.2 V power supply, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.