We analyze the influence of disorder on the polaritonic bandstructure of metallic photonic crystal slabs. Different disorder types with varying next-neighbor correlations and disorder amounts are implemented. Angle-resolved transmission measurements allow to determine the relation of bandstructure and disorder. We found that uncorrelated disorder retains the bandstructure and only reduces the splitting between the gaps. Correlated disorder, however, leads to the complete destruction of the bandstructure for moderate disorder amounts due to the excitation of different modes. We present a model that shows a good agreement with the measurements.