Both doped and undoped homoepitaxial diamond films were fabricated using microwave plasma-enhanced chemical vapor deposition (CVD). The conductivity of the diamond film is strongly affected by the surface treatment. In particular, exposure of film surface to a hydrogen plasma results in the formation of a conductive layer which can be used to obtain linear ("ohmic") I-Y characteristics of the Au/ diamond contacts, regardless of the doping level. The proper chemical cleaning of the boron-doped homoepitaxial diamond surface allows the fabrication of Au-gate Schottky diodes with excellent rectifying characteristics at temperatures of at least 4OO'C.
Boron-doped homoepitaxial diamond films were selectively grown using sputtered SiO2 as a masking material. Uniform thickness, down to 50 nm, over a large area can be achieved with this technique. Hall mobility of selectively grown films is comparable to that of high-pressure high-temperature synthetic bulk diamond with a corresponding carrier concentration.
The properties and characteristics of vacuum microtriodes based on NEA diamond surfaces were modelled. Specifically, an NEA diamond vacuum microtriode array was investigated using electrical measurements, electron optics software, and microwave circuit simulation. Data for emission current versus applied voltage for various anode-to-cathode distances for diamond NEA surfaces was analyzed and various parameters were extracted. Electron optics software was used to determine Fowler-Nordheim and space-charge-limited DC I-V characteristics for each microtriode. Microwave circuit simulation was done to determine the behavior of arrays of these vacuum microtriodes in an RF amplifier circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.