Great successes have been achieved in developing perovskite light-emitting devices (LEDs) with blue, green, red, and near-infrared emissions. However, as key optoelectronic devices, yellow-colored perovskite LEDs remain challenging, mainly due to the inevitable halide separation in mixed halide perovskites under high bias, causing undesired color change of devices. In addition to this color-missing problem, the intrinsic toxicity and poor stability of conventional lead-halide perovskites also restrict their practical applications. We herein report the fabrication of stable yellow LEDs based on a ternary copper halide CsCu2I3, addressing the color instability and toxicity issues facing current perovskite yellow LED’s compromise. Joint experiment–theory characterizations indicate that the yellow electroluminescence originates from the broadband emission of self-trapped excitons centered at 550 nm as well as the comparable and reasonably low carrier effective masses favorable for charge transport. With a maximum luminance of 47.5 cd/m2 and an external quantum efficiency of 0.17%, the fabricated yellow LEDs exhibit a long half-lifetime of 5.2 h at 25 °C and still function properly at 60 °C with a half-lifetime of 2.2 h, which benefits from the superior resistance of CsCu2I3 to heat, moisture, and oxidation in ambient environmental conditions. The results obtained promise the copper halides with broadband light emission as an environment-friendly and stable yellow emitter for the LEDs compatible with practical applications.
Nanostructural zinc oxide pins have been fabricated by vapor transport on copper-coated silicon wafer. The nanopins are composed of hexagonal wurtzite-phase zinc oxide with single crystal quality. The growth process includes two steps: (1) growth of a micron-sized zinc oxide dot on the substrate and (2) growth of a sharp tip from the zinc oxide dot. The field emission of the nanopins shows a low field emission threshold (1.92 V/μm at a current density of 0.1 μA/cm−2) and high current density with a field enhancement factor of 657. The emission current density and the electric field follow Fowler–Nordheim relationship. The good performance for field emission is attributed to the single-crystalline structure and the nanopin geometry.
Gallium-doped nanostructural zinc oxide fibers have been fabricated by vapor-phase transport method of heating the mixture of zinc oxide, gallium oxide, and graphite powders in air. The zinc oxide fibers grew along [002] direction, forming a vertically aligned array that is predominantly perpendicular to the substrate surface. With a gallium doping concentration of 0.73 at. %, the corresponding carrier concentration and resistivity were 3.77×1020 cm−3 and 8.9×10−4 Ω cm, respectively. The field emission of these vertically aligned ZnO fiber arrays showed a low field emission threshold (2.4 V/μm at a current density of 0.1 μA/cm2), high current density, and high field enhancement factor (2317). The dependence of emission current density on the electric field followed Fowler–Nordheim relationship. The enhanced field emission is attributed to the aligned structure, good crystal quality, and especially, the improved electrical properties (increased conductivity and reduced work function) of the nanofibers due to gallium doping.
Using the mixture of zinc oxide and graphite powders as source materials, zinc oxide nanodisks with bulk quantity were fabricated by vapor-phase transport method. The nanodisks have perfect hexagonal shape with about 3μm in diagonal and 300nm in thickness. The growth is favored along six symmetric directions of ±[101¯0], ±[11¯00], and ±[011¯0] with the typical growth along [0001] direction suppressed, which directly leads to the formation of zinc oxide nanodisk. The microstructure and growth mechanism are discussed.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe 3 O 4 ) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multicomponent Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation. The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe 3 O 4 ) NPs are grafted with PMMA brushes with molecular weights from M ¼ 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P ¼ 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.