A coherent X-ray beam expander based on a multilens interferometer is proposed in this paper. The multilens interferometer allows efficient generation of a highly diverging coherent beam up to several milliradians in the hard X-ray energy range. The optical properties of the interferometer were experimentally demonstrated at the ESRF ID13 undulator beamline (Grenoble, France), using 12.4 keV X-rays. The beam expander allowed us to control the angular size and photon flux density of the formed beam and enabled operation in both coherent and incoherent modes. The experimental results were fully consistent with the theoretical concepts and appropriate computer simulations. Future design improvements and related applications are also discussed.
The phase-sensitive X-ray imaging technique based on the bilens interferometer is developed. The essence of the method consists of scanning a sample, which is set upstream of the bilens across the beam of one lens of the interferometer by recording changes in the interference pattern using a high-resolution image detector. The proposed approach allows acquiring the absolute value of a phase shift profile of the sample with a fairly high phase and spatial resolution. The possibilities of the imaging technique were studied theoretically and experimentally using fibres with different sizes as the test samples at the ESRF ID06 beamline with 12 keV X-rays. The corresponding phase shift profile reconstructions and computer simulations were performed. The experimental results are fully consistent with theoretical concepts and appropriate numerical calculations. Applications of the interferometric imaging technique are discussed, as well as future improvements.
An X-ray amplitude-splitting interferometer based on compound refractive lenses, which operates in the reflection mode, is proposed and realized. The idea of a reflecto-interferometer is to use a very simplified experimental setup where a focused X-ray beam reflected from parallel flat surfaces creates an interference pattern in a wide angular range. The functional capabilities of the interferometer were experimentally tested at the European Synchrotron Radiation Facility (ESRF) ID06 beamline in the X-ray energy range from 10 keV to 15 keV. The main features of the proposed approach, high spatial and temporal resolution, were demonstrated experimentally. The reflections from free-standing Si3N4 membranes, gold and resist layers were studied. Experimentally recorded interferograms are in good agreement with our simulations. The main advantages and future possible applications of the reflecto-interferometer are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.