We report surface-passivated core–shell InP nanowire array solar cells fabricated using catalyst-free selective-area metal organic vapor phase epitaxy. Reflectance measurements confirm enhanced light absorption due to significantly reduced reflectance over a wide spectral range. The wide-band-gap outer shell layer of core-multishell nanowires effectively passivates the large surface area of the nanowires, increasing the short-circuit current density and elevating the energy conversion efficiency by 6.35% under AM1.5G illumination. This passivation technique could open a new approach to nanowire-based photovoltaics with higher energy efficiency.
Semiconductor nanowires (NWs) are good candidate for light-absorbing material in next generation photovoltaic and III–V NW-based multi-heterojunction solar cells using lattice-mismatched material system are expected as high energy-conversion efficiencies under concentrated light. Here we demonstrate core–shell GaAs NW arrays by using catalyst-free selective-area metal organic vapor phase epitaxy (SA-MOVPE) as a basis for multijunction solar cells. The reflectance of the NW array without any anti-reflection coating showed much lower reflection than that of a planar wafer. Next we then fabricated core–shell GaAs NW array solar cells with radial p–n junction. Despite the low reflectance, the energy-conversion efficiency was 0.71% since a high surface recombination rate of photo-generated carriers and poor ohmic contact between the GaAs and transparent indium–tin-oxide (ITO) electrode. To avoid these degradations, we introduced an InGaP layer and a Ti/ITO electrode. As a result, we obtained a short-circuit current of 12.7 mA cm-2, an open-circuit voltage of 0.5 V, and a fill factor of 0.65 for an overall efficiency of 4.01%.
We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.
Axial p–i–n junction nanowire (NW) solar cells (SCs) with a position-controlled GaAs-based NW array were fabricated by selective-area metal organic vapor phase epitaxy (SA-MOVPE). The measured electron-beam-induced current (EBIC) signals showed the formation of an axial p–i–n junction, which confirms power generation under sunlight illumination. The series resistance of the NW SCs is much higher than that of conventional planar SCs based on Si or other III–V compound semiconductors. The main difficulty concerning the fabrication of these NW SCs is the degradation of series resistance between the GaAs-based NWs and the indium–tin oxide (ITO) deposited as a transparent electrode. The series resistance of the fabricated GaAs-based NW SCs was reduced by introducing a tin doping contact layer between the ITO and the NW array, which is formed by pulse doping. As a result of this improved structure, the fabricated SCs exhibited an open-circuit voltage of 0.544 V, a short-circuit current of 18.2 mA/cm2, and a fill factor of 0.721 for an overall conversion efficiency of 7.14% under AM1.5G illumination. The series resistance of the SCs could be decreased to 0.132 Ω·cm2, which is one order of magnitude lower than that of the SC without a highly doped contact layer. This reduced series resistance indicates that nanostructure SCs with transparent electrodes and multijunction NW SCs with high efficiencies can be fabricated on a commercial basis in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.