The paper presents the results of a preliminary study on the structural analysis of the hip joint, taking into account changes in the mechanical properties of the articular cartilage of the joint. Studies have been made due to the need to determine the tension distribution occurring in the cartilage of the human hip. These distribution are the starting point for designing custom made human hip prosthesis. Basic anatomy, biomechanical analysis of the hip joint and articular cartilage are introduced. The mechanical analysis of the hip joint model is conducted. Final results of analysis are presented. Main conclusions of the study are: the capability of absorbing loads by articular cartilage of the hip joint is preliminary determined as decreasing with increasing degenerations of the cartilage and with age of a patient. Without further information on changes of cartilage's mechanical parameters in time it is hard to determine the nature of relation between mentioned capability and these parameters.
The work contains basic information on the anatomy and physiology of bone tissue. Basic concepts related to the structure of bone tissue are presented. General issues related to bone reconstruction processes and biomechanical structural adaptations processes were described. Mechanical parameters of bone tissue were presented.
Abstract. The shoulder joint is a crucial element of the upper limb and is necessary to maintain full mobility during daily activities. Similar as in the hip, it is an example of a ball and socket joint, enabling articulation between the head of the humerus and the glenoid cavity of the scapula. By studying kinematics of upper limb s, it is possible to distinct several possible movements in the shoulder joint. Due to many painful diseases and medical conditions, it may be crucial to perform a pain reducing procedure, like shoulder joint replacement. In order to preserve the function of the joint, the endoprosthesis should be designed exclusively for the patient. To assess a scale of damage in the joint or its specific structure, the shoulder was scanned using the computed tomography procedure. Results of the scan were processed with the use of Materialise Mimics software, which converts standard 2D images into 3D CAD models. Necessary analysis and measurements were taken leading to the beginning of the designing process. The prosthesis was created using Solid Edge software, developed especially for the purpose of rapid prototyping. After determining the physical properties of structural materials, the Finite Elements Analysis of the model was conducted using SolidWorks Simulation software under various load conditions.
The article presents the results of a preliminary study on the structural analysis of the knee joint, considering changes in the mechanical properties of the articular cartilage of the joint. Studies have been made due to the need to determine the tension distribution occurring in the cartilage of the human knee. This distribution could be the starting point for designing custom made human knee prosthesis. Basic anatomy, biomechanical analysis of the knee joint and articular cartilage was introduced. Based on a series of computed tomography [CT] scans, the 3D model of human knee joint was reverse-engineered, processed and exported to CAD software. The static mechanical analysis of the knee joint model was conducted using the finite element method [FEM], in three different values of tibiofemoral angle and with varying mechanical properties of the cartilage tissue. Main conclusions of the study are: the capability to absorb loads by articular cartilage of the knee joint is preliminary determined as decreasing with increasing degenerations of the cartilage and with age of a patient. Without further information on changes of cartilage’s mechanical parameters in time it is hard to determine the nature of relation between mentioned capability and these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.