The complete mitochondrial genome of the machilid
Trigoniophthalmus alternatus
(Silvestri 1904) is herein described and applied to phylogenetic analyses, inclusive of the most early-divergent lineages of hexapods. Both gene content and order generally conform with the organization of the arthropods’ mitochondrial genome. One gene translocation involving
trnA
is the autapomorphic character observed in this species. Another peculiar molecular feature is the long size of the A + T-rich region, due to the occurrence of repeat units. The phylogenetic analyses support the typical placement, along the hexapods’ tree, of Ectognatha, Monocondylia and Dicondylia, with Diplura as the adelphotaxon of all true insects.
Leafminer insects of the genus Liriomyza are small flies whose larvae feed on the internal tissue of some of the most important crop plants for the human diet. Several of these pest species are highly uniform from the morphological point of view, meaning molecular data represents the only reliable taxonomic tool useful to define cryptic boundaries. In this study, both mitochondrial and nuclear molecular markers have been applied to investigate the population genetics of some Tunisian populations of the polyphagous species Liriomyza cicerina, one of the most important pest of chickpea cultivars in the whole Mediterranean region. Molecular data have been collected on larvae isolated from chickpea, faba bean, and lentil leaves, and used for population genetics, phylogenetics, and species delimitation analyses. Results point toward high differentiation levels between specimens collected on the three different legume crops, which, according to the species delimitation methods, are also sufficient to define incipient species differentiation and cryptic species occurrence, apparently tied up with host choice. Genetic data have also been applied for a phylogenetic comparison among Liriomyza species, further confirming their decisive role in the systematic studies of the genus.
The complete mitochondrial genome of the springtail Bourletiella arvalis (Fitch, 1863) is herein described and applied to a Bayesian phylogenetic analysis, inclusive of all the Collembola mitochondrial DNAs sequenced so far. The gene content and order, as well as the nucleotide composition, conform with the well-known features of hexapods' mitochondrial genomes. The phylogenetic analysis supports the monophyly of Collembola, Poduromorpha, Entomobryomorpha and Symphypleona. However, no mtDNA from Neelipleona is available to date, therefore limiting the application of mitochondrial genomes to further investigate springtail systematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.