We analyzed the antioxidant properties of Ilex paraguariensis infusion (Ip) popularly known as mate (mä'tā), by using two experimental models: the induction of DNA double-strand breaks (DSB) by hydrogen peroxide (H(2)O(2)) and lethality in Saccharomyces cerevisiae, as well as peroxide and lipoxygenase-induced human low-density lipoprotein (LDL) oxidation. Diploid yeast cells were exposed to different concentrations of H(2)O(2) (5-10 mmol/L) in the absence or presence of Ip infusion (10(-1) v/v) or alpha-tocopherol (10(-2) mol/L). Both mate infusion and alpha-tocopherol significantly decreased the dose dependent DSB number, and the lethality induced by H(2)O(2). Peroxynitrite and lipoxygenase-induced human LDL oxidation are inhibited by Ip extracts in a potent, dose-dependent fashion. Dilutions of 5 x 10(-3) v/v provide 50% +/- 10% inhibition. Finally, Ip extracts are potent direct quenchers of the free radical 1,1-diphenyl-2-picrylhydrazyl. Dilutions of 2 x 10(-2) v/v produced quenching of more than 30%, which was comparable to that obtained with 0.5-1 mmol/L alpha-tocopherol or the quercetin aglycone, respectively. For comparison, total polyphenol content of Ip, green, and black tea (Camelia sinensis) were 6.5 +/- 0.8; 1.8 +/- 0.5; and 1.13 +/- 0.3 mmol of quercetin equivalents per liter, respectively. Their respective free radical quenching activities at dilutions of 1 x 10(-1) v/v were 75% +/- 5%; 35% +/- 5%; and 2% +/- 5%. Ip is thus a rich source of polyphenols and has antioxidant properties comparable to those of green tea which merit further in vivo intervention and cross-sectional studies.
DNA repair pathways, cell cycle checkpoints, and redox protection systems are essential factors for securing genomic stability. The aim of the present study was to analyze the effect of Ilex paraguariensis (Ip) infusion and one of its polyphenolic components rutin on cellular and molecular damage induced by ionizing radiation. Ip is a beverage drank by most inhabitants of Argentina, Paraguay, Southern Brazil, and Uruguay. The yeast Saccharomyces cerevisiae (SC7Klys 2-3) was used as the eukaryotic model. Exponentially growing cells were exposed to gamma rays (γ) in the presence or absence of Ip or rutin. The concentrations used simulated those found in the habitual infusion. Surviving fractions, mutation frequency, and DNA double-strand breaks (DSB) were determined after treatments. A significant increase in surviving fractions after gamma irradiation was observed following combined exposure to γ+R, or γ+Ip. Upon these concomitant treatments, mutation and DSB frequency decreased significantly. In the mutant strain deficient in MEC1, a significant increase in γ sensitivity and a low effect of rutin on γ-induced chromosomal fragmentation was observed. Results were interpreted in the framework of a model of interaction between radiation-induced free radicals, DNA repair pathways, and checkpoint controls, where the DNA damage that induced activation of MEC1 nodal point of the network could be modulated by Ip components including rutin. Furthermore, ionizing radiation-induced redox cascades can be interrupted by rutin potential and other protectors contained in Ip.
DNA repair, checkpoint pathways and protection mechanisms against different types of perturbations are critical factors for the prevention of genomic instability. The aim of the present work was to analyze the roles of RAD17 and HDF1 gene products during the late stationary phase, in haploid and diploid yeast cells upon gamma irradiation. The checkpoint protein, Rad17, is a component of a PCNA-like complex-the Rad17/Mec3/Ddc1 clamp-acting as a damage sensor; this protein is also involved in double-strand break (DBS) repair in cycling cells. The HDF1 gene product is a key component of the non-homologous end-joining pathway (NHEJ). Diploid and haploid rad17 /rad17 , and hdf1 Saccharomyces cerevisiae mutant strains and corresponding isogenic wild types were used in the present study. Yeast cells were grown in standard liquid nutrient medium, and maintained at 30 • C for 21 days in the stationary phase, without added nutrients. Cell samples were irradiated with 60 Co γ rays at 5 Gy/s, 50 Gy ≤ Dabs ≤ 200 Gy. Thereafter, cells were incubated in PBS (liquid holding: LH, 0 ≤ t ≤ 24 h). DNA chromosomal analysis (by pulsed-field electrophoresis), and surviving fractions were determined as a function of absorbed doses, either immediately after irradiation or after LH. Our results demonstrated that the proteins Rad17, as well as Hdf1, play essential roles in DBS repair and survival after gamma irradiation in the late stationary phase and upon nutrient stress (LH after irradiation). In haploid cells, the main pathway is NHEJ. In the diploid state, the induction of LH recovery requires the function of Rad17. Results are compatible with the action of a network of DBS repair pathways expressed upon different ploidies, and different magnitudes of DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.