We introduce a new model of stochastic bandits with adversarial corruptions which aims to capture settings where most of the input follows a stochastic pattern but some fraction of it can be adversarially changed to trick the algorithm, e.g., click fraud, fake reviews and email spam. The goal of this model is to encourage the design of bandit algorithms that (i) work well in mixed adversarial and stochastic models, and (ii) whose performance deteriorates gracefully as we move from fully stochastic to fully adversarial models.In our model, the rewards for all arms are initially drawn from a distribution and are then altered by an adaptive adversary. We provide a simple algorithm whose performance gracefully degrades with the total corruption the adversary injected in the data, measured by the sum across rounds of the biggest alteration the adversary made in the data in that round; this total corruption is denoted by C. Our algorithm provides a guarantee that retains the optimal guarantee (up to a logarithmic term) if the input is stochastic and whose performance degrades linearly to the amount of corruption C, while crucially being agnostic to it. We also provide a lower bound showing that this linear degradation is necessary if the algorithm achieves optimal performance in the stochastic setting (the lower bound works even for a known amount of corruption, a special case in which our algorithm achieves optimal performance without the extra logarithm).
The buying and selling of information is taking place at a scale unprecedented in the history of commerce, thanks to the formation of online marketplaces for user data. Data providing agencies sell user information to advertisers to allow them to match ads to viewers more effectively. In this paper we study the design of optimal mechanisms for a monopolistic data provider to sell information to a buyer, in a model where both parties have (possibly correlated) private signals about a state of the world, and the buyer uses information learned from the seller, along with his own signal, to choose an action (e.g., displaying an ad) whose payoff depends on the state of the world.We provide sufficient conditions under which there is a simple one-round protocol (i.e. a protocol where the buyer and seller each sends a single message, and there is a single money transfer) achieving optimal revenue. In these cases we present a polynomial-time algorithm that computes the optimal mechanism. Intriguingly, we show that multiple rounds of partial information disclosure (interleaved by payment to the seller) are sometimes necessary to achieve optimal revenue if the buyer is allowed to abort his interaction with the seller prematurely. We also prove some negative results about the inability of simple mechanisms for selling information to approximate more complicated ones in the worst case.
The Generalized Second Price (GSP) auction is the primary method by which sponsered search advertisements are sold. We study the performance of this auction in the Bayesian setting for players with correlated types. Correlation arises very naturally in the context of sponsored search auctions, especially as a result of uncertainty inherent in the behaviour of the underlying ad allocation algorithm. We demonstrate that the Bayesian Price of Anarchy of the GSP auction is bounded by 4, even when agents have arbitrarily correlated types. Our proof highlights a connection between the GSP mechanism and the concept of smoothness in games, which may be of independent interest.For the special case of uncorrelated (i.e. independent) agent types, we improve our bound to 2(1 − 1/e) −1 ≈ 3.16, significantly improving upon previously known bounds. Using our techniques, we obtain the same bound on the performance of GSP at coarse correlated equilibria, which captures (for example) a repeated-auction setting in which agents apply regret-minimizing bidding strategies. Moreoever, our analysis is robust against the presence of irrational bidders and settings of asymmetric information, and our bounds degrade gracefully when agents apply strategies that form only an approximate equilibrium.
The Generalized Second Price (GSP) auction is the primary auction used for monetizing the use of the Internet. It is well-known that truthtelling is not a dominant strategy in this auction and that inefficient equilibria can arise. Edelman et al. (AER, 2007) and Varian (IJIO, 2007) show that an efficient equilibrium always exists in the full information setting. Their results, however, do not extend to the case with uncertainty, where efficient equilibria might not exist.In this paper we study the space of equilibria in GSP, and quantify the efficiency loss that can arise in equilibria under a wide range of sources of uncertainty, as well as in the full information setting. The traditional Bayesian game models uncertainty in the valuations (types) of the participants. The Generalized Second Price (GSP) auction gives rise to a further form of uncertainty: the selection of quality factors resulting in uncertainty about the behavior of the underlying ad allocation algorithm. The bounds we obtain apply to both forms of uncertainty, and are robust in the sense that they apply under various perturbations of the solution concept, extending to models with information asymmetries and bounded rationality in the form of learning strategies.We present a constant bound (2.927) on the factor of the efficiency loss (price of anarchy) of the corresponding game for the Bayesian model of partial information about other participants and about ad quality factors. For the full information setting, we prove a surprisingly low upper bound of 1.282 on the price of anarchy over pure Nash equilibria, nearly matching a lower bound of 1.259 for the case of three advertisers. Further, we do not require that the system reaches equilibrium, and give similarly low bounds also on the quality degradation for any no-regret learning outcome. Our conclusion is that the number of advertisers in the auction has almost no impact on the price of anarchy, and that the efficiency of GSP is very robust with respect to the belief and rationality assumptions imposed on the participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.