Abstract. This paper aims to investigate the effect of void shape and arrangement on the effective elastic properties of porous microstructure. The characteristics of the voids are in different shapes, sizes and arrangement. The porous microstructure models were developed using CATIA. Then, Voxelcon was employed to analyse the multiscale finite element model and determine the homogenized properties. Based on the results, void shape, size, and arrangement of porous microstructure were found sensitive to the elastic (homogenized) properties. Ellipsoidal shape having the highest Young's modulus, whereas the spherical shape has the highest Poisson's ratio and shear modulus. Cubical shape was the lowest for all the elastic properties. Moreover, the formation arrangement in void cubical shape produced the highest Young's modulus and shear modulus.
A newly designed Uniaxial external fixator which functions as a universal fixator in the application of all types of bone fractures is recently introduced by both Hospital Universiti Kebangsaan Malaysia (HUKM) and Universiti Malaysia Perlis (UniMAP). The Investigation is focused on identifying and measuring the performance in terms of strength or weakness of the fixator that is needed before the application to the human body. Hence, this research was conducted to determine the performance of Uniaxial external fixator which was based on geometry using different screw drilling techniques applied during an angled uniaxial compression load. A three-dimensional fixator-bone was constructed using different screw inserting techniques which was then converted into ANSYS v14.5 for the purposes of conducting a finite element analysis (FEA). Axial compressive loading with various degrees from 60 to 6300 N were applied to bone models to stimulate patient’s daily activities while 10 to 100 N were applied to fixator models for the purposes of reviewing environmental loading to fixator-bone models. Findings revealed that maximum magnitude which caused deformation for predrilling and self-drilling models were located at the highest pin-bone interaction. Conversely, the maximum magnitude of the von Mises strain and stress was located at the lowest pin-bone interaction by omitting the existence of fixator for both Case 1 and 2. There was no obvious difference in the comparison of both models in terms of deformation. However, predrilling models have higher strain and stress than self-drilling models. In sum, findings indicated that self-drilling models have better performance compared to the predrilling models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.