A 20‐inch, largest OLED display in the world is demonstrated which is driven by “Super Amorphous Silicon” technology. It has been widely believed that the characteristics of amorphous silicon TFT is not sufficient to drive OLED display. This paper turns over the hypothesis to prove that amorphous silicon can be applied to the large active‐matrix driven displays. Novel approaches to enable amorphous silicon to drive bright and long life OLED display are shown to open a bright future to realize larger OLED televisions.
We performed stacking experiments on Si dies using annular tungsten TSVs (Through Silicon Vias) and Cu studs with low-volume solder micro-bumps. Unlike standard 100-micron C4 (Controlled Collapse Chip Connection) solder balls, very small solder volumes (< 6 microns in height) form IMC (InterMetallic Compounds) in the junctions during the bonding or reflow processes. The two interconnect metallurgies of Cu/Ni/In and Cu/Sn joints were considered for low-volume lead-free solder micro-bumps for 3D integration. A previous study on these metallurgies [5] showed that the Cu/Sn joints form thermally stable intermetallics while in the Cu/Ni/In joints, some indium solder remains unreacted due to the presence of the Ni barriers. The shear testing on the stacked systems showed that the die stacks with Cu/Sn joints exhibit higher shear strengths than those with Cu/Ni/In joints. However the impact shock testing on the systems revealed that the die stacks with Cu/Sn joints are less resistant to mechanical shocks than the systems with Cu/Ni/In joints. This new work focuses on thermal cycle testing of the die stack systems with the Cu/Ni/In and Cu/Sn interconnections. Preliminary thermal cycle testing on the die stack systems with Cu/Ni/In joints showed that the joints are stable against thermal cycle stresses for thousands of cycles. To quickly compare the systems with two metallurgies, we mounted the Si die stacks onto organic substrates to impose additional stresses on the systems. In addition to standard DTC (Deep Thermal Cycle) tests, we also conducted a HAATS (Highly accelerated Air to Air Thermal Shock) test [23] with a short cycle time to reduce the testing time. The DTC and HAATS tests showed that the stacked systems with Cu/Ni/In joints had fewer failures and smaller increases in the electrical resistances of the joints during the tests than the systems with Cu/Sn joints.
Thermal conduction and mechanical stresses in through silicon via (TSV) structures in three dimensional system in package (3D SiP) under device operation condition were discussed. A large scale simulator, ADVENTURECluster® based on finite element method (FEM) was used to simulate the effects of voids formed inside Cu TSVs on the thermal conduction and mechanical stresses in the TSV structure. The thermal performance that was required in 3D SiP was estimated to ensure the reliability. Simulations for thermal stresses in the TSV structure in 3D SiP were carried out under thermal condition due to power ON/OFF of device. In case that void was not present inside the TSV, the stresses in TSV were close to the hydrostatic pressure and the magnitude of the equivalent stress was lower than the yield stress of copper. Maximum principal stress of the Si chip in the TSV structure for the case without voids was lower than that of the bending strength of silicon. However, the level of the stresses in the Si chips should not be negligible for damages to Si chips. In case that void was present inside the TSV, stress concentration was occurred around the void in the TSV. The magnitude of the equivalent stress in the TSV was lower than the yield stress of copper. The magnitude of the maximum principal stress of the Si chip was lower than that of the bending strength of silicon. However, its level should not be negligible for damages to TSVs and Si chips. The stress on inner surfaces of Si chip was slightly reduced due to the presence of a void in the TSV.
We developed a vacuum underfill technology for 3D chip stacks and for flip chips in high performance system integration. We fabricated a 3D prototype chip stack using the vacuum underfill technology to apply the adhesive. The underfill was injected into each 6 µm gaps in a 3-layer chip stack and no voids were detected in acoustic microscopy images. Electrical tests and thermal reliability tests were used to measure the resistance of the vertical interconnections and the impact of the underfill. The results showed there was minimal difference in the average interconnection resistance of the chip stack with and without underfill.
PoP (Package on Package) structures have been used widely in digital consumer electronics products such as digital still cameras and mobile phones. However, the final stack height from the top to the bottom package for these structures is higher than that of the current stacked die packages. To reduce the height of the package, a flip chip technology is used.Since the logic chips of mobile applications use a pad pitch of less than 80 μm or less, an ultra-fine-pitch flip chip interconnection technique is required. The C4 (Controlled Collapse Chip Connection) flip chip technology is widely used in area array flip chip packages. The C4 was named after the four initial characters which are "C" of Controlled Collapse Chip Connection. The collapse of the molten solder is controlled by the individual opening of solder resist on each pad on the substrate so that the chip can be connected onto the substrate. However, C4 is not suitable in the ultra-fine-pitch flip chips because the such a individual opening which is suitable for the ultra-fine-pitch cannot be made on the substraete. Instead of the C4 flip chip technology, the new interconnection technique was developed using the solder capped Cu pillar bumps.It is very easy to control the space between the die and the substrate by adjusting the Cu pillar height even when a large slit window opening exists on a group of pads on the substrate. Since the collapse control of the solder bumps is not necessary, we call the process C2 (Chip Connection). The C2 was named after the two initial characters which are "C" of Chip Connection. The solder capped Cu pillar bumps are connected to Cu substrate pads, which are a surface treated with OSP (Organic Solder Preservative), by reflow with no-clean processes. This technology creates the SMT (Surface Mount Technology)/flip chip hybrid assembly for SoP (System on Package) use. We have produced 50 μm pitch interconnections and observed the micro structure and tested their reliability. Some voids in the solder joint were observed after the reflow process. The results of warpage measurements and FEM (Finite Element Method) analyses suggest that these voids are the shrinkage voids caused by the wide temperature range of the solder liquid phase and the substrate warpage.Since they are not the stress induced voids, they didn't affect the reliability test. The increase in interconnection resistance during the reliability test was compared between the C2 interconnection and Au stud-solder interconnection. Since the resistance increase of the C2 interconnection is much smaller than that for the Au stud-solder interconnection, it is clear that the C2 flip chip technology provides robust solder connections at low cost. Also the C2 structure with a low-k device was evaluated and no failures were observed at 1,500 cycles in the TC (Thermal Cycle) test. In addition to the fine-pitch interconnections, a die thickness of 70 μm is required to reduce the final stack height. The reliability performance of the C2 flip chip with the die thickness...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.