We investigated a way of reducing the stacking fault (SF) density on a highly nitrogen (N) doped 4H-SiC crystal. SFs were generated at highly N doped crystal exceeding 4 x 1019 cm-3 and the density was increased with increasing N concentration. We found that Al co-doping had the potential to suppress this SF generation and was effective up to an N concentration of about 1 x 1021cm-3. This effect depended strongly on the Al concentration. We discussed the reason for the SF suppression effect of Al co-doping.
High temperature chemical vapor deposition (HTCVD) simulations of silicon carbide (SiC) were demonstrated with experimental results. A vertical cylindrical reactor was used in an RF inductive heating furnace and the temperature was more than 2200. SiH4 and C3H8 were used as source gases and H2 as carrier gas. A gas phase reaction model from the literature was used on the condition that the gas phase reaction is a quasi-equilibrium state. It was found that the major species were Si, Si2C, SiC2 and C2H2 in the gas phase reaction model as well as in the thermodynamic equilibrium calculation. Sublimation etching was considered in the surface reaction rates by modifying partial pressures of species with equilibrium vapor pressures. CFD-ACE+ and MALT2 software packages were used in the present calculation. The sticking coefficients were determined by fitting the calculated growth rates to the experimental ones. The simulated growth rate in a different reactor is in good agreement with the experimental value, using the same sticking coefficients. The present simulation could be useful to design a new reactor and to find optimum conditions.
The mechanism of layer growth as well as defect formation in the SiC crystal is fundamentally important to derive its appropriate performance. The purpose of the present study is to investigate competitive adsorption properties of growth species on the various 4H-SiC polytype surfaces. Adsorption structure and binding energy of growth species in the experimentally condition on various SiC surfaces were investigated by density functional theory. For the SiC(000-1) and SiC(0001) surfaces, the adsorption energy by DFT follows the orders C > H > Si > SiC2 > Si2C > C2H2. Furthermore, based on the DFT results, amount of adsorption of each species in the experimental pressure condition were evaluated by grand canonical Monte Carlo method. H and Si are main adsorbed species on SiC(0001) and SiC(000-1) surfaces, respectively. The ratio of amount of adsorption of Si to H was depending on the surface structure that might explain different growth rate of the surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.