Near threshold circuits (NTC) are an attractive and promising technology that provides significant power savings with some delay penalty. The combination of NTC technology with MOS current mode logic (MCML) is examined in this work. By combining MCML with NTC, the constant power consumption of MCML is reduced to leakage power levels that can be tolerated in certain modern applications. Additionally, the speed of NTC is improved due to the high speed nature of MCML technology. A 14 nm Fin field effect transistor (FinFET) technology is used to evaluate these combined circuit techniques. A 32-bit Kogge Stone adder is chosen as a demonstration vehicle for feasibility analysis. MCML with NTC is shown to yield enhanced power efficiency when operated above 1 GHz with a 100% activity factor as compared to standard CMOS. MCML with NTC is more power efficient than standard CMOS beyond 9 GHz over a wide range of activity factors. MCML with NTC also exhibits significantly lower noise levels as compared to standard CMOS. The results of the analysis demonstrate that pairing NTC and MCML is efficient when operating at high frequencies and activity factors.
Static power consumes a significant portion of the available power budget. Consequently, leakage current reduction techniques such as power gating have become necessary. Standard global power gating approaches are an effective method to reduce idle leakage current, however, global power gating does not consider partially idle circuits and imposes significant delay and routing constraints. An adaptive power gating technique is applied locally to a 32-bit Kogge Stone adder, and evaluated at the 16 nm FinFET technology node. This high granularity adaptive power gating approach employs a local controller to lower energy use and reduce circuit overhead. The controller conserves additional power when the circuit is partially idle (based on the inputs to the adder) by adaptively powering down inactive blocks. Moreover, the local controller reduces routing complexity since a global power gating signal is not required. The proposed adaptive power gating technique exhibits significant energy savings, ranging from 8% to 21%. This technique targets partially idle circuits, and therefore complements rather than replaces global power gating techniques. A 12% delay overhead results in a 5% area overhead. This delay overhead is reduced to 5% by increasing the area overhead to 16%, and can be further reduced by trading off additional area.
This paper explores the use of MOS current-mode logic (MCML) as a fast and low noise alternative to static CMOS circuits in microprocessors, thereby improving the performance, energy efficiency, and signal integrity of future computer systems. The power and ground noise generated by an MCML circuit is typically 10-100× smaller than the noise generated by a static CMOS circuit. Unlike static CMOS, whose dominant dynamic power is proportional to the frequency, MCML circuits dissipate a constant power independent of clock frequency. Although these traits make MCML highly energy efficient when operating at high speeds, the constant static power of MCML poses a challenge for a microarchitecture that operates at the modest clock rate and with a low activity factor. To address this challenge, a single-core microarchitecture for MCML is explored that exploits the C-slow retiming technique, and operates at a high frequency with low complexity to save energy. This design principle contrasts with the contemporary multicore design paradigm for static CMOS that relies on a large number of gates operating in parallel at the modest speeds. The proposed architecture generates 10-40× lower power and ground noise, and operates within 13% of the performance (i.e., 1/ExecutionTime) of a conventional, eight-core static CMOS processor while exhibiting 1.6× lower energy and 9% less area. Moreover, the operation of an MCML processor is robust under both systematic and random variations in transistor threshold voltage and effective channel length.Index Terms-Architecture-circuit codesign, energy efficient, low noise, microprocessors, MOS current-mode logic (MCML). 1063-8210
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.