Amantadine
inhibits the M2 proton channel of influenza A virus,
yet most of the currently circulating strains of the virus carry mutations
in the M2 protein that render the virus amantadine-resistant. While
most of the research on novel amantadine analogues has revolved around
the synthesis of novel adamantane derivatives, we have recently found
that other polycyclic scaffolds effectively block the M2 proton channel,
including amantadine-resistant mutant channels. In this work, we have
synthesized and characterized a series of pyrrolidine derivatives
designed as analogues of amantadine. Inhibition of the wild-type M2
channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of
the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel
compounds inhibited the wild-type ion channel in the low micromolar
range. Of note, two of the compounds inhibited the amantadine-resistant
A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and
low micromolar IC50, respectively. None of the compounds
was found to inhibit the S31N mutant ion channel.
We have synthesized and characterized a series of compounds containing the 3-azatetracyclo[5.2.1.15,8.01,5]undecane scaffold designed as analogs of amantadine, an inhibitor of the M2 proton channel of influenza A virus. Inhibition of the wild-type (wt) M2 channel and the amantadine-resistant A/M2-S31N and A/M2-V27A mutant ion channels were measured in Xenopus oocytes using two-electrode voltage clamp (TEV) assays. Most of the novel compounds inhibited the wt ion channel in the low micromolar range. Of note, several compounds inhibited the A/M2 V27A mutant ion channel, one of them with submicromolar IC50. None of the compounds was found to inhibit the S31N mutant ion channel. The antiviral activity of three novel dual wt and A/M2-V27A channels inhibitors was confirmed by influenza virus yield assays.
Rhomboid proteases form a paradigm for intramembrane proteolysis and have been implicated in several human diseases. However, their study is hampered by difficulties in solubilization and purification. We here report on the use of polymers composed of maleic acid and either diisobutylene or styrene for solubilization of rhomboid proteases in lipid nanodiscs, which proceeds with up to 48% efficiency. We show that the activity of rhomboids in lipid nanodiscs is closer to that in the native membrane than rhomboids in detergent. Moreover, a rhomboid that was proteolytically unstable in detergent turned out to be stable in lipid nanodiscs, underlining the benefit of using these polymer-stabilized nanodiscs. The systems are also compatible with the use of activity-based probes and can be used for small molecule inhibitor screening, allowing several downstream applications.
Fibroblast growth factor 21 (FGF21), a peptide hormone with pleiotropic effects on carbohydrate and lipid metabolism, is considered a target for the treatment of diabetes. We investigated the role of peroxisome proliferator-activated receptor (PPAR) β/δ deficiency in hepatic FGF21 regulation. Increased Fgf21 expression was observed in the livers of PPARβ/δ-null mice and in mouse primary hepatocytes when this receptor was knocked down by small interfering RNA (siRNA). Increased Fgf21 was associated with enhanced protein levels in the heme-regulated eukaryotic translation initiation factor 2α (eIF2α) kinase (HRI). This increase caused enhanced levels of phosphorylated eIF2α and activating transcription factor (ATF) 4, which is essential for Fgf21-induced expression. siRNA analysis demonstrated that HRI regulates Fgf21 expression in primary hepatocytes. Enhanced Fgf21 expression attenuated tunicamycin-induced endoplasmic reticulum stress, as demonstrated by using a neutralizing antibody against FGF21. Of note, increased Fgf21 expression in mice fed a high-fat diet or hepatocytes exposed to palmitate was accompanied by reduced PPARβ/δ and activation of the HRI-eIF2α-ATF4 pathway. Moreover, pharmacological activation of HRI increased Fgf21 expression and reduced lipid-induced hepatic steatosis and glucose intolerance, but these effects were not observed in Fgf21-null mice. Overall, these findings suggest that HRI is a potential target for regulating hepatic FGF21 levels.
3D printing has the potential to transform the way in which chemical reactions are carried out due to its low-cost, ease-of-use as a technology and its capacity to expedite the development of iteratively enhanced prototypes. In this present study, we developed a novel, low-cost polypropylene (PP) column reactor that was incorporated into an existing continuousflow reactor for the synthesis of heterocycles. The utility and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.