Two types of cellulose-based materials, 6-carboxycellulose with 2.1 or 6.6 wt% of -COOH groups, were prepared and tested for potential use in tissue engineering. The materials were functionalized with arginine, i.e. an amino acid with a basic side chain, or with chitosan, in order to balance the relatively acid character of oxidized cellulose molecules, and were seeded with vascular smooth muscle cells (VSMC). The cell adhesion and growth were then evaluated directly on the materials, and also on the underlying polystyrene culture dishes. Of these two types of studied materials, 6-carboxycellulose with 2.1 wt% of -COOH groups was more appropriate for cell colonization. The cells on this material achieved an elongated shape, while they were spherical in shape on the other materials. The number of cells and the concentration (per mg of protein) of contractile proteins alpha-actin and SM1 and SM2 myosins, i.e. markers of the phenotypic maturation of VSMC, were also significantly higher on this material. Functionalization of the material with arginine and chitosan further improved the phenotypic maturation of VSMC. Chitosan also improved the adhesion and growth of these cells. In comparison with the control polystyrene dishes, the proliferation of cells on our cellulose-based materials was relatively low. This suggests that these materials can be used in applications where high proliferation activity of cells is not desirable, e.g. proliferation of VSMC on vascular prostheses. Alternatively, the cell proliferation might be enhanced by another more efficient modification, which would require further research.
Dermal injuries and chronic wounds usually regenerate with scar formation. Successful treatment without scarring might be achieved by pre-seeding a wound dressing with cells. We aimed to prepare a wound dressing fabricated from sodium carboxymethylcellulose (Hcel® NaT), combined with fibrin and seeded with dermal fibroblasts in vitro. We fabricated the Hcel® NaT in a porous and homogeneous form (P form and H form, respectively) differing in structural morphology and in the degree of substitution of hydroxyl groups. Each form of Hcel® NaT was functionalized with two morphologically different fibrin structures to improve cell adhesion and proliferation, estimated by an MTS assay. Fibrin functionalization of the Hcel® NaT strongly enhanced colonization of the material with human dermal fibroblasts. Moreover, the type of fibrin structures influenced the ability of the cells to adhere to the material and proliferate on it. The fibrin mesh filling the void spaces between cellulose fibers better supported cell attachment and subsequent proliferation than the fibrin coating, which only enwrapped individual cellulose fibers. On the fibrin mesh, the cell proliferation activity on day 3 was higher on the H form than on the P form of Hcel® NaT, while on the fibrin coating, the cell proliferation on day 7 was higher on the P form. The Hcel® NaT wound dressing functionalized with fibrin, especially when in the form of a mesh, can accelerate wound healing by supporting fibroblast adhesion and proliferation.
Various hemostatics are used for renal surgical procedures. We investigated the hemostatic efficacy of cellulose derivatives on the model of partial nephrectomy in rats focusing on the local reaction of renal parenchyma. A total of 50 Wistar rats were divided into five groups of 10 animals each. Partial nephrectomy of the caudal pole without hilar vascular control was performed. Oxidized cellulose (OC), sodium salt of oxycellulose (OCN), carboxymethyl cellulose (CMC), dialdehyde cellulose (DAC), and gelatin-based hemostatic (C) were applied to the bleeding wounds. The time to hemostasis was monitored. Half of the animals were euthanized after 3 days, the second half 30 days from the experiment start date. The left kidney was excised and subjected to histopathological examination. The biochemical data was subjected to statistical analysis. The time to hemostasis in all groups was significantly less than in the C group (in OC p = 0.0057, OCN p = 0.0039, CMC and DAC p = 0.0001). In the C group, massive hemorrhages and necrosis did occur. In the OC and OCN groups, there were regenerative changes, a receding inflammatory reaction and hemorrhage. DAC caused an immune reaction and massive interstitial hemorrhages with biochemical signs of liver damage. Parenchyma in CMC revealed a reduction of necrosis and interstitial hemorrhages with regenerative processes. The most effective hemostatics were CMC and OC, achieving the best results both in the time to hemostasis, and for histopathological evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.